enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cross product - Wikipedia

    en.wikipedia.org/wiki/Cross_product

    The cross product appears in the calculation of the distance of two skew lines (lines not in the same plane) from each other in three-dimensional space. The cross product can be used to calculate the normal for a triangle or polygon, an operation frequently performed in computer graphics. For example, the winding of a polygon (clockwise or ...

  3. Exterior algebra - Wikipedia

    en.wikipedia.org/wiki/Exterior_algebra

    The cross product and triple product in three dimensions each admit both geometric and algebraic interpretations. The cross product u × v can be interpreted as a vector which is perpendicular to both u and v and whose magnitude is equal to the area of the parallelogram determined by the two vectors.

  4. Levi-Civita symbol - Wikipedia

    en.wikipedia.org/wiki/Levi-Civita_symbol

    However, the Levi-Civita symbol is a pseudotensor because under an orthogonal transformation of Jacobian determinant −1, for example, a reflection in an odd number of dimensions, it should acquire a minus sign if it were a tensor. As it does not change at all, the Levi-Civita symbol is, by definition, a pseudotensor.

  5. Invertible matrix - Wikipedia

    en.wikipedia.org/wiki/Invertible_matrix

    The correctness of the formula can be checked by using cross- and triple-product properties and by noting that for groups, left and right inverses always coincide. Intuitively, because of the cross products, each row of A –1 is orthogonal to the non-corresponding two columns of A (causing the off-diagonal terms of I = A − 1 A {\displaystyle ...

  6. Curvilinear coordinates - Wikipedia

    en.wikipedia.org/wiki/Curvilinear_coordinates

    Well-known examples of curvilinear coordinate systems in three-dimensional Euclidean space (R 3) are cylindrical and spherical coordinates. A Cartesian coordinate surface in this space is a coordinate plane ; for example z = 0 defines the x - y plane.

  7. Vector algebra relations - Wikipedia

    en.wikipedia.org/wiki/Vector_algebra_relations

    The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.

  8. Seven-dimensional cross product - Wikipedia

    en.wikipedia.org/.../Seven-dimensional_cross_product

    In three dimensions the cross product is invariant under the action of the rotation group, SO(3), so the cross product of x and y after they are rotated is the image of x × y under the rotation. But this invariance is not true in seven dimensions; that is, the cross product is not invariant under the group of rotations in seven dimensions, SO(7).

  9. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    The set of all orthogonal matrices of size n with determinant +1 is a representation of a group known as the special orthogonal group SO(n), one example of which is the rotation group SO(3). The set of all orthogonal matrices of size n with determinant +1 or −1 is a representation of the (general) orthogonal group O(n).