Search results
Results from the WOW.Com Content Network
A protostar is a very young star that is still gathering mass from its parent molecular cloud. It is the earliest phase in the process of stellar evolution . [ 1 ] For a low-mass star (i.e. that of the Sun or lower), it lasts about 500,000 years. [ 2 ]
Representative lifetimes of stars as a function of their masses The change in size with time of a Sun-like star Artist's depiction of the life cycle of a Sun-like star, starting as a main-sequence star at lower left then expanding through the subgiant and giant phases, until its outer envelope is expelled to form a planetary nebula at upper right Chart of stellar evolution
Star formation theory, as well as accounting for the formation of a single star, must also account for the statistics of binary stars and the initial mass function. Most stars do not form in isolation but as part of a group of stars referred as star clusters or stellar associations. [2]
The theory was developed by Immanuel Kant and published in his Universal Natural History and Theory of the Heavens (1755) and then modified in 1796 by Pierre Laplace. Originally applied to the Solar System, the process of planetary system formation is now thought to be at work throughout the universe.
The energy source of PMS objects is gravitational contraction, as opposed to hydrogen burning in main-sequence stars. In the Hertzsprung–Russell diagram , pre-main-sequence stars with more than 0.5 M ☉ first move vertically downward along Hayashi tracks , then leftward and horizontally along Henyey tracks , until they finally halt at the ...
A star forms by accumulation of material that falls in to a protostar from a circumstellar disk or envelope. Material in the disk is cooler than the surface of the protostar, so it radiates at longer wavelengths of light producing excess infrared emission. As material in the disk is depleted, the infrared excess decreases.
The outcome is the formation of a thin disc supported by gas pressure in the axial direction. [5] The initial collapse takes about 100,000 years. After that time the star reaches a surface temperature similar to that of a main sequence star of the same mass and becomes visible.
Convective energy transport is usually modeled using mixing length theory. This treats the gas in the star as containing discrete elements which roughly retain the temperature, density, and pressure of their surroundings but move through the star as far as a characteristic length, called the mixing length . [ 5 ]