Search results
Results from the WOW.Com Content Network
Atmospheric super-rotation is a phenomenon where a planet's atmosphere rotates faster than the planet itself. This behavior is observed in the atmospheres of Venus , Titan , Jupiter , and Saturn. Venus exhibits the most extreme super-rotation, with its atmosphere circling the planet in four Earth days, much faster than the planet's own rotation ...
Download as PDF; Printable version ... move to sidebar hide. Super-rotation can mean: Atmospheric super -rotation, in which a planet ... Inner core super-rotation, ...
A static atmospheric model has a more limited domain, excluding time. A standard atmosphere is defined by the World Meteorological Organization as "a hypothetical vertical distribution of atmospheric temperature, pressure and density which, by international agreement, is roughly representative of year-round, midlatitude conditions."
In atmospheric science, an atmospheric model is a mathematical model constructed around the full set of primitive, dynamical equations which govern atmospheric motions. It can supplement these equations with parameterizations for turbulent diffusion, radiation , moist processes ( clouds and precipitation ), heat exchange , soil , vegetation ...
Forces that cause atmospheric motion include the pressure gradient force, gravity, and viscous friction. Together, they create the forces that accelerate our atmosphere. The pressure gradient force causes an acceleration forcing air from regions of high pressure to regions of low pressure. Mathematically, this can be written as:
For a figure showing spatial and temporal scales of motions in the atmosphere and oceans, see Kantha and Clayson. [ 8 ] When the Rossby number is large (either because f is small, such as in the tropics and at lower latitudes; or because L is small, that is, for small-scale motions such as flow in a bathtub ; or for large speeds), the effects ...
This spin-down time is the characteristic time for the transfer of atmospheric axial angular momentum to Earth's surface and vice versa. The zonal wind-component on the ground, which is most effective for the transfer of axial angular momentum between Earth and atmosphere, is the component describing rigid rotation of the atmosphere. [8]
In atmospheric science, balanced flow is an idealisation of atmospheric motion. The idealisation consists in considering the behaviour of one isolated parcel of air having constant density, its motion on a horizontal plane subject to selected forces acting on it and, finally, steady-state conditions.