Search results
Results from the WOW.Com Content Network
The Sorgenfrey line can thus be used to study right-sided limits: if : is a function, then the ordinary right-sided limit of at (when the codomain carries the standard topology) is the same as the usual limit of at when the domain is equipped with the lower limit topology and the codomain carries the standard topology.
The following is a list of named topologies or topological spaces, many of which are counterexamples in topology and related branches of mathematics. This is not a list of properties that a topology or topological space might possess; for that, see List of general topology topics and Topological property.
The finest topology on X is the discrete topology; this topology makes all subsets open. The coarsest topology on X is the trivial topology; this topology only admits the empty set and the whole space as open sets. In function spaces and spaces of measures there are often a number of possible topologies.
In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance.More specifically, a topological space is a set whose elements are called points, along with an additional structure called a topology, which can be defined as a set of neighbourhoods for each point that satisfy some axioms ...
Every compact space is σ-compact, and every σ-compact space is Lindelöf (i.e. every open cover has a countable subcover). [4] The reverse implications do not hold, for example, standard Euclidean space (R n) is σ-compact but not compact, [5] and the lower limit topology on the real line is Lindelöf but not σ-compact. [6]
Continuum (topology) Extended real number line; Long line (topology) Sierpinski space; Cantor set, Cantor space, Cantor cube; Space-filling curve; Topologist's sine curve; Uniform norm; Weak topology; Strong topology; Hilbert cube; Lower limit topology; Sorgenfrey plane; Real tree; Compact-open topology; Zariski topology; Kuratowski closure ...
The real line can also be given the lower limit topology. Here, the basic open sets are the half open intervals [a, b). This topology on R is strictly finer than the Euclidean topology defined above; a sequence converges to a point in this topology if and only if it converges from above in the Euclidean topology. This example shows that a set ...
The cofinite topology on an infinite set is locally compact in senses (1), (2), and (3), and compact as well, but it is not Hausdorff or regular so it is not locally compact in senses (4) or (5). The indiscrete topology on a set with at least two elements is locally compact in senses (1), (2), (3), and (4), and compact as well, but it is not ...