Search results
Results from the WOW.Com Content Network
An abstract syntax tree (AST) is a data structure used in computer science to represent the structure of a program or code snippet. It is a tree representation of the abstract syntactic structure of text (often source code ) written in a formal language .
The simple Sethi–Ullman algorithm works as follows (for a load/store architecture): . Traverse the abstract syntax tree in pre- or postorder . For every leaf node, if it is a non-constant left-child, assign a 1 (i.e. 1 register is needed to hold the variable/field/etc.), otherwise assign a 0 (it is a non-constant right child or constant leaf node (RHS of an operation – literals, values)).
A code property graph of a program is a graph representation of the program obtained by merging its abstract syntax trees (AST), control-flow graphs (CFG) and program dependence graphs (PDG) at statement and predicate nodes.
This is particularly used in the representation of text in computer languages, [2] which are generally stored in a tree structure as an abstract syntax tree. Abstract syntax, which only consists of the structure of data, is contrasted with concrete syntax, which also includes information about the representation. For example, concrete syntax ...
An abstract syntax is abstract because it is represented by mathematical objects that have certain structure by their very nature. For instance, in first-order abstract syntax (FOAS) trees, as commonly used in compilers, the tree structure implies the subexpression relation, meaning that no parentheses are required to disambiguate programs (as they are, in the concrete syntax).
The expression objects are composed recursively into a composite/tree structure that is called abstract syntax tree (see Composite pattern). The Interpreter pattern doesn't describe how to build an abstract syntax tree. This can be done either manually by a client or automatically by a parser. See also the UML class and object diagram below.
The result for the above examples would be (in reverse Polish notation) "3 4 +" and "3 4 2 1 − × +", respectively. The shunting yard algorithm will correctly parse all valid infix expressions, but does not reject all invalid expressions. For example, "1 2 +" is not a valid infix expression, but would be parsed as "1 + 2". The algorithm can ...
Download as PDF; Printable version ... move to sidebar hide. Syntax tree may refer to: Abstract syntax tree, used in computer science ... Concrete syntax tree, ...