Search results
Results from the WOW.Com Content Network
The 30S subunit is the target of antibiotics such as tetracycline and gentamicin. [11] These antibiotics specifically target the prokaryotic ribosomes, hence their usefulness in treating bacterial infections in eukaryotes. Tetracycline interacts with H27 in the small subunit as well as binding to the A-site in the large subunit. [11]
Protein TolC, the outer membrane component of a tripartite efflux pump in Escherichia coli. AcrB, the other component of pump, Escherichia coli. An efflux pump is an active transporter in cells that moves out unwanted material. Efflux pumps are an important component in bacteria in their ability to remove antibiotics. [1]
Inhibits bacterial protein synthesis by binding to the 50S subunit of the ribosome Fosfomycin: Monurol, Monuril: Acute cystitis in women: This antibiotic is not recommended for children and 75 and up of age: Inactivates enolpyruvyl transferase, thereby blocking cell wall synthesis Fusidic acid: Fucidin: Metronidazole: Flagyl
Puromycin is stable for one year as solution when stored at -20 °C. The recommended dose as a selection agent in cell cultures is within a range of 1-10 μg/mL, although it can be toxic to eukaryotic cells at concentrations as low as 1 μg/mL. Puromycin acts quickly and can kill more than 99% of nonresistant cells within one day. [citation needed]
The structure of the kasugamycin-70S ribosome complex from Escherichia coli has been determined by X-ray crystallography at 3.5-A resolution. The drug binds within the messenger RNA channel of the 30S subunit between the universally conserved G926 and A794 nucleotides in 16S ribosomal RNA, which are sites of kasugamycin resistance.
β-Lactam antibiotics are indicated for the prevention and treatment of bacterial infections caused by susceptible organisms. At first, β-lactam antibiotics were mainly active only against gram-positive bacteria, yet the recent development of broad-spectrum β-lactam antibiotics active against various gram-negative organisms has increased their usefulness.
Most target bacterial functions or growth processes. [8] Those that target the bacterial cell wall (penicillins and cephalosporins) or the cell membrane , or interfere with essential bacterial enzymes (rifamycins, lipiarmycins, quinolones, and sulfonamides) have bactericidal activities, killing the bacteria.
They inhibit protein synthesis by binding reversibly to the bacterial 30S ribosomal subunit and preventing the aminoacyl tRNA from binding to the A site of the ribosome. They also bind to some extent the bacterial 50S ribosomal subunit and may alter the cytoplasmic membrane causing intracellular components to leak from bacterial cells.