Ads
related to: double precision addition problems grade 2teacherspayteachers.com has been visited by 100K+ users in the past month
- Assessment
Creative ways to see what students
know & help them with new concepts.
- Resources on Sale
The materials you need at the best
prices. Shop limited time offers.
- Free Resources
Download printables for any topic
at no cost to you. See what's free!
- Worksheets
All the printables you need for
math, ELA, science, and much more.
- Assessment
Search results
Results from the WOW.Com Content Network
2Sum and its variant Fast2Sum were first published by Ole Møller in 1965. [2] Fast2Sum is often used implicitly in other algorithms such as compensated summation algorithms; [1] Kahan's summation algorithm was published first in 1965, [3] and Fast2Sum was later factored out of it by Dekker in 1971 for double-double arithmetic algorithms. [4]
For summing [, +,,] in double precision, Kahan's algorithm yields 0.0, whereas Neumaier's algorithm yields the correct value 2.0. Higher-order modifications of better accuracy are also possible. For example, a variant suggested by Klein, [ 12 ] which he called a second-order "iterative Kahan–Babuška algorithm".
Pairwise summation is the default summation algorithm in NumPy [9] and the Julia technical-computing language, [10] where in both cases it was found to have comparable speed to naive summation (thanks to the use of a large base case).
The computer may also offer facilities for splitting a product into a digit and carry without requiring the two operations of mod and div as in the example, and nearly all arithmetic units provide a carry flag which can be exploited in multiple-precision addition and subtraction. This sort of detail is the grist of machine-code programmers, and ...
For numbers with a base-2 exponent part of 0, i.e. numbers with an absolute value higher than or equal to 1 but lower than 2, an ULP is exactly 2 −23 or about 10 −7 in single precision, and exactly 2 −53 or about 10 −16 in double precision. The mandated behavior of IEEE-compliant hardware is that the result be within one-half of a ULP.
In approximate arithmetic, such as floating-point arithmetic, the distributive property of multiplication (and division) over addition may fail because of the limitations of arithmetic precision. For example, the identity 1 / 3 + 1 / 3 + 1 / 3 = ( 1 + 1 + 1 ) / 3 {\displaystyle 1/3+1/3+1/3=(1+1+1)/3} fails in decimal arithmetic , regardless of ...
Ads
related to: double precision addition problems grade 2teacherspayteachers.com has been visited by 100K+ users in the past month