Search results
Results from the WOW.Com Content Network
The breadth-first-search algorithm is a way to explore the vertices of a graph layer by layer. It is a basic algorithm in graph theory which can be used as a part of other graph algorithms.
Breadth-first search (BFS) is an algorithm for searching a tree data structure for a node that satisfies a given property. It starts at the tree root and explores all nodes at the present depth prior to moving on to the nodes at the next depth level.
It is based on a breadth-first search in a large undirected graph (a model of Kronecker graph with average degree of 16). There are three computation kernels in the benchmark: the first kernel is to generate the graph and compress it into sparse structures CSR or CSC (Compressed Sparse Row/Column); the second kernel does a parallel BFS search ...
Breadth-first search (BFS) and depth-first search (DFS) are two closely-related approaches that are used for exploring all of the nodes in a given connected component. Both start with an arbitrary node, the "root". [14]
Parallel all-pairs shortest path algorithm; Parallel breadth-first search; Parallel single-source shortest path algorithm; Path-based strong component algorithm; Pre-topological order; Prim's algorithm; Proof-number search; Push–relabel maximum flow algorithm
By contrast, a breadth-first search will never reach the grandchildren, as it seeks to exhaust the children first. A more sophisticated analysis of running time can be given via infinite ordinal numbers ; for example, the breadth-first search of the depth 2 tree above will take ω ·2 steps: ω for the first level, and then another ω for the ...
A breadth-first search (BFS) is another technique for traversing a finite graph. BFS visits the sibling vertices before visiting the child vertices, and a queue is used in the search process. This algorithm is often used to find the shortest path from one vertex to another.
During the execution of standard breadth-first search or Dijkstra's algorithm, the frontier is the neighbor set of all visited vertices. [3] In the Radius-Stepping algorithm, a new round distance is decided on each round with the goal of bounding the number of substeps.