enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hilbert space - Wikipedia

    en.wikipedia.org/wiki/Hilbert_space

    A Hilbert space is a vector space equipped with an inner product operation, which allows lengths and angles to be defined. Furthermore, Hilbert spaces are complete, which means that there are enough limits in the space to allow the techniques of calculus to be used. A Hilbert space is a special case of a Banach space.

  3. Quantum logic - Wikipedia

    en.wikipedia.org/wiki/Quantum_logic

    In the Hilbert space formulation of quantum mechanics as presented by von Neumann, a physical observable is represented by some (possibly unbounded) densely defined self-adjoint operator A on a Hilbert space H. A has a spectral decomposition, which is a projection-valued measure E defined on the Borel subsets of R.

  4. Dirac–von Neumann axioms - Wikipedia

    en.wikipedia.org/wiki/Dirac–von_Neumann_axioms

    If the C*-algebra is the algebra of all bounded operators on a Hilbert space , then the bounded observables are just the bounded self-adjoint operators on .If is a unit vector of then = , is a state on the C*-algebra, meaning the unit vectors (up to scalar multiplication) give the states of the system.

  5. Hilbert system - Wikipedia

    en.wikipedia.org/wiki/Hilbert_system

    [6] [7] Every Hilbert system is an axiomatic system, which is used by many authors as a sole less specific term to declare their Hilbert systems, [8] [9] [10] without mentioning any more specific terms. In this context, "Hilbert systems" are contrasted with natural deduction systems, [3] in which no axioms are used, only inference rules.

  6. Mathematical formulation of quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/Mathematical_formulation...

    As such, quantum states form a ray in projective Hilbert space, not a vector. Many textbooks fail to make this distinction, which could be partly a result of the fact that the Schrödinger equation itself involves Hilbert-space "vectors", with the result that the imprecise use of "state vector" rather than ray is very difficult to avoid. [5]

  7. Spectral theory - Wikipedia

    en.wikipedia.org/wiki/Spectral_theory

    This definition applies to a Banach space, but of course other types of space exist as well; for example, topological vector spaces include Banach spaces, but can be more general. [12] [13] On the other hand, Banach spaces include Hilbert spaces, and it is these spaces that find the greatest application and the richest theoretical results. [14]

  8. Reproducing kernel Hilbert space - Wikipedia

    en.wikipedia.org/wiki/Reproducing_kernel_Hilbert...

    A feature map is a map :, where is a Hilbert space which we will call the feature space. The first sections presented the connection between bounded/continuous evaluation functions, positive definite functions, and integral operators and in this section we provide another representation of the RKHS in terms of feature maps.

  9. Quantum state space - Wikipedia

    en.wikipedia.org/wiki/Quantum_state_space

    In quantum mechanics a state space is a separable complex Hilbert space.The dimension of this Hilbert space depends on the system we choose to describe. [1] [2] The different states that could come out of any particular measurement form an orthonormal basis, so any state vector in the state space can be written as a linear combination of these basis vectors.