Search results
Results from the WOW.Com Content Network
Strictly speaking, convexity refers to the second derivative of output price with respect to an input price. In derivative pricing, this is referred to as Gamma (Γ), one of the Greeks. In practice the most significant of these is bond convexity, the second derivative of bond price with respect to interest rates.
In finance, bond convexity is a measure of the non-linear relationship of bond prices to changes in interest rates, and is defined as the second derivative of the price of the bond with respect to interest rates (duration is the first derivative). In general, the higher the duration, the more sensitive the bond price is to the change in ...
Vomma, [4] volga, [15] vega convexity, [15] or DvegaDvol [15] measures second-order sensitivity to volatility. Vomma is the second derivative of the option value with respect to the volatility, or, stated another way, vomma measures the rate of change to vega as volatility changes.
Specifically, duration can be formulated as the first derivative of the price with respect to the interest rate, and convexity as the second derivative (see: Bond duration closed-form formula; Bond convexity closed-form formula; Taylor series). Continuing the above example, for a more accurate estimate of sensitivity, the convexity score would ...
This is called the futures "convexity correction". Thus, assuming constant rates, for a simple, non-dividend paying asset, the value of the futures/forward price, F(t,T) , will be found by compounding the present value S(t) at time t to maturity T by the rate of risk-free return r .
Because STIR futures settle against the same index as a subset of FRAs, IMM FRAs, their pricing is related. The nature of each product has a distinctive gamma (convexity) profile resulting in rational, no arbitrage, pricing adjustments. This adjustment is called futures convexity adjustment (FCA) and is usually expressed in basis points. [1]
John Hull and Alan White, "One factor interest rate models and the valuation of interest rate derivative securities," Journal of Financial and Quantitative Analysis, Vol 28, No 2, (June 1993) pp. 235–254. John Hull and Alan White, "Pricing interest-rate derivative securities", The Review of Financial Studies, Vol 3, No. 4 (1990) pp. 573–592.
For example, a solid cube is convex; however, anything that is hollow or dented, for example, a crescent shape, is non‑convex. Trivially, the empty set is convex. More formally, a set Q is convex if, for all points v 0 and v 1 in Q and for every real number λ in the unit interval [0,1], the point (1 − λ) v 0 + λv 1. is a member of Q.