enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hydrodynamical helicity - Wikipedia

    en.wikipedia.org/wiki/Hydrodynamical_helicity

    Helicity is a pseudo-scalar quantity: it changes sign under change from a right-handed to a left-handed frame of reference; it can be considered as a measure of the handedness (or chirality) of the flow. Helicity is one of the four known integral invariants of the Euler equations; the other three are energy, momentum and angular momentum.

  3. Helicity (particle physics) - Wikipedia

    en.wikipedia.org/wiki/Helicity_(particle_physics)

    The helicity of a particle is positive (" right-handed") if the direction of its spin is the same as the direction of its motion and negative ("left-handed") if opposite. Helicity is conserved. [1] That is, the helicity commutes with the Hamiltonian, and thus, in the absence of external forces, is time-invariant. It is also rotationally ...

  4. Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Navier–Stokes_equations

    The Navier–Stokes equations (/ n æ v ˈ j eɪ s t oʊ k s / nav-YAY STOHKS) are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes.

  5. Chirality (physics) - Wikipedia

    en.wikipedia.org/wiki/Chirality_(physics)

    Since the helicity of massive particles is frame-dependent, it might seem that the same particle would interact with the weak force according to one frame of reference, but not another. The resolution to this paradox is that the chirality operator is equivalent to helicity for massless fields only, for which helicity is not frame-dependent. By ...

  6. Helicity basis - Wikipedia

    en.wikipedia.org/wiki/Helicity_basis

    The two-component helicity eigenstates satisfy ^ (^) = (^) where are the Pauli matrices, ^ is the direction of the fermion momentum, = depending on whether spin is pointing in the same direction as ^ or opposite.

  7. C-symmetry - Wikipedia

    en.wikipedia.org/wiki/C-symmetry

    In (vastly) simplified terms, it is a technique for performing calculations to obtain solutions for a system of coupled differential equations via perturbation theory. A key ingredient to this process is the quantum field , one for each of the (free, uncoupled) differential equations in the system.

  8. Zimm–Bragg model - Wikipedia

    en.wikipedia.org/wiki/Zimm–Bragg_model

    In statistical mechanics, the Zimm–Bragg model is a helix-coil transition model that describes helix-coil transitions of macromolecules, usually polymer chains. Most models provide a reasonable approximation of the fractional helicity of a given polypeptide; the Zimm–Bragg model differs by incorporating the ease of propagation (self-replication) with respect to nucleation.

  9. Magnetic helicity - Wikipedia

    en.wikipedia.org/wiki/Magnetic_helicity

    Magnetic helicity is a gauge-dependent quantity, because can be redefined by adding a gradient to it (gauge choosing).However, for perfectly conducting boundaries or periodic systems without a net magnetic flux, the magnetic helicity contained in the whole domain is gauge invariant, [15] that is, independent of the gauge choice.