Search results
Results from the WOW.Com Content Network
The term power standing wave ratio (PSWR) is sometimes referred to, and defined as, the square of the voltage standing wave ratio. The term is widely cited as "misleading". [11] The expression "power standing-wave ratio", which may sometimes be encountered, is even more misleading, for the power distribution along a loss-free line is constant. ...
To test for a match, the reference impedance of the bridge is set to the expected load impedance (for example, 50 Ohms), and the transmission line connected as the unknown impedance. RF power is applied to the circuit. The voltage at the line input represents the vector sum of the forward wave, and the wave reflected from the load.
Hence, it is appropriate to illustrate the steps for finding per-unit values for voltage and impedance. First, let the base power (S base) of each end of a transformer become the same. Once every S is set on the same base, the base voltage and base impedance for every transformer can easily be obtained. Then, the real numbers of impedances and ...
Figure 1. Waveguide slotted line. Slotted lines are used for microwave measurements and consist of a movable probe inserted into a slot in a transmission line.They are used in conjunction with a microwave power source and usually, in keeping with their low-cost application, a low cost Schottky diode detector and VSWR meter rather than an expensive microwave power meter.
A time-domain reflectometer; an instrument used to locate the position of faults on lines from the time taken for a reflected wave to return from the discontinuity.. A signal travelling along an electrical transmission line will be partly, or wholly, reflected back in the opposite direction when the travelling signal encounters a discontinuity in the characteristic impedance of the line, or if ...
In telecommunications and transmission line theory, the reflection coefficient is the ratio of the complex amplitude of the reflected wave to that of the incident wave. The voltage and current at any point along a transmission line can always be resolved into forward and reflected traveling waves given a specified reference impedance Z 0.
Mismatch loss represents the amount of power wasted in the system [dubious – discuss]. It can also be thought of as the amount of power gained if the system was perfectly matched [dubious – discuss]. Impedance matching is an important part of RF system design; however, in practice there will likely be some degree of mismatch loss. [1]
The line is modeled by a series of differential segments with differential series elements ( , ) and shunt elements ( , ) (as shown in the figure at the beginning of the article). The characteristic impedance is defined as the ratio of the input voltage to the input current of a semi-infinite length of line.