Search results
Results from the WOW.Com Content Network
Among dividing cells, there are multiple levels of cell potency, which is the cell's ability to differentiate into other cell types. A greater potency indicates a larger number of cell types that can be derived. A cell that can differentiate into all cell types, including the placental tissue, is known as totipotent.
At the two cell stage, the anterior cell is the AB cell while the posterior cell is the P1 cell. The dorsal/ventral axis of the animal is set by a random position of cells during the four cell stage of the embryo. The dorsal cell is the ABp cell while the ventral cell is the EMS cell. Localization of cytoplasmic determinants
Cell potency is a cell's ability to differentiate into other cell types. [1] [2] The more cell types a cell can differentiate into, the greater its potency.Potency is also described as the gene activation potential within a cell, which like a continuum, begins with totipotency to designate a cell with the most differentiation potential, pluripotency, multipotency, oligopotency, and finally ...
The German-Polish physician Robert Remak suspected that he had already discovered animal cell division in the blood of chicken embryos in 1841, [56] but it was not until 1852 that he was able to confirm animal cell division for the first time in bird embryos, frog larvae and mammals. [57]
The main processes involved in the embryonic development of animals are: tissue patterning (via regional specification and patterned cell differentiation); tissue growth; and tissue morphogenesis. Regional specification refers to the processes that create the spatial patterns in a ball or sheet of initially similar cells.
He coined the term cell (from Latin cellula, meaning "small room" [41]) in his book Micrographia (1665). [42] [40] 1839: Theodor Schwann [43] and Matthias Jakob Schleiden elucidated the principle that plants and animals are made of cells, concluding that cells are a common unit of structure and development, and thus founding the cell theory.
The eukaryotic cell cycle consists of four distinct phases: G 1 phase, S phase (synthesis), G 2 phase (collectively known as interphase) and M phase (mitosis and cytokinesis). M phase is itself composed of two tightly coupled processes: mitosis, in which the cell's nucleus divides, and cytokinesis, in which the cell's cytoplasm and cell membrane divides forming two daughter cells.
Stem cells are cells with the unique ability to produce differentiated daughter cells and to preserve their stem cell identity through self-renewal. [12] In mammals, most adult tissues contain tissue-specific stem cells that reside in the tissue and proliferate to maintain homeostasis for the lifespan of the organism. These cells can undergo ...