Search results
Results from the WOW.Com Content Network
Vectors involved in the parallelogram law. In a normed space, the statement of the parallelogram law is an equation relating norms: ‖ ‖ + ‖ ‖ = ‖ + ‖ + ‖ ‖,.. The parallelogram law is equivalent to the seemingly weaker statement: ‖ ‖ + ‖ ‖ ‖ + ‖ + ‖ ‖, because the reverse inequality can be obtained from it by substituting (+) for , and () for , and then simplifying.
Later, the ability to show all of the steps explaining the calculation were added. [6] The company's emphasis gradually drifted towards focusing on providing step-by-step solutions for mathematical problems at the secondary and post-secondary levels. Symbolab relies on machine learning algorithms for both the search and solution aspects of the ...
Pappus's area theorem describes the relationship between the areas of three parallelograms attached to three sides of an arbitrary triangle. The theorem, which can also be thought of as a generalization of the Pythagorean theorem , is named after the Greek mathematician Pappus of Alexandria (4th century AD), who discovered it.
For a polygon with 2n sides, the parallelogram will have a base of length ns, and a height h. As the number of sides increases, the length of the parallelogram base approaches half the circle circumference, and its height approaches the circle radius. In the limit, the parallelogram becomes a rectangle with width π r and height r.
The Jacobian at a point gives the best linear approximation of the distorted parallelogram near that point (right, in translucent white), and the Jacobian determinant gives the ratio of the area of the approximating parallelogram to that of the original square. If m = n, then f is a function from R n to itself and the Jacobian matrix is a ...
Euler's quadrilateral theorem or Euler's law on quadrilaterals, named after Leonhard Euler (1707–1783), describes a relation between the sides of a convex quadrilateral and its diagonals. It is a generalisation of the parallelogram law which in turn can be seen as generalisation of the Pythagorean theorem.
For an example, any parallelogram can be subdivided into a trapezoid and a right triangle, as shown in figure to the left. If the triangle is moved to the other side of the trapezoid, then the resulting figure is a rectangle. It follows that the area of the parallelogram is the same as the area of the rectangle: [2] A = bh (parallelogram).
An arbitrary quadrilateral and its diagonals. Bases of similar triangles are parallel to the blue diagonal. Ditto for the red diagonal. The base pairs form a parallelogram with half the area of the quadrilateral, A q, as the sum of the areas of the four large triangles, A l is 2 A q (each of the two pairs reconstructs the quadrilateral) while that of the small triangles, A s is a quarter of A ...