enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Document-term matrix - Wikipedia

    en.wikipedia.org/wiki/Document-term_matrix

    When creating a data-set of terms that appear in a corpus of documents, the document-term matrix contains rows corresponding to the documents and columns corresponding to the terms. Each ij cell, then, is the number of times word j occurs in document i. As such, each row is a vector of term counts that represents the content of the document ...

  3. Power Query - Wikipedia

    en.wikipedia.org/wiki/Power_Query

    Power Query was first announced in 2011 under the codename "Data Explorer" as part of Azure SQL Labs. In 2013, in order to expand on the self-service business intelligence capabilities of Microsoft Excel, the project was redesigned to be packaged as an add-in Excel and was renamed "Data Explorer Preview for Excel" [4], and was made available for Excel 2010 and Excel 2013. [5]

  4. In-place matrix transposition - Wikipedia

    en.wikipedia.org/wiki/In-place_matrix_transposition

    Typically, the matrix is assumed to be stored in row-major or column-major order (i.e., contiguous rows or columns, respectively, arranged consecutively). Performing an in-place transpose (in-situ transpose) is most difficult when N ≠ M , i.e. for a non-square (rectangular) matrix, where it involves a complex permutation of the data elements ...

  5. Row and column vectors - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_vectors

    The transpose (indicated by T) of any row vector is a column vector, and the transpose of any column vector is a row vector: […] = [] and [] = […]. The set of all row vectors with n entries in a given field (such as the real numbers ) forms an n -dimensional vector space ; similarly, the set of all column vectors with m entries forms an m ...

  6. Transpose - Wikipedia

    en.wikipedia.org/wiki/Transpose

    In linear algebra, the transpose of a matrix is an operator which flips a matrix over its diagonal; that is, it switches the row and column indices of the matrix A by producing another matrix, often denoted by A T (among other notations). [1] The transpose of a matrix was introduced in 1858 by the British mathematician Arthur Cayley. [2]

  7. Permutation matrix - Wikipedia

    en.wikipedia.org/wiki/Permutation_matrix

    Multiplying a matrix M by either or on either the left or the right will permute either the rows or columns of M by either π or π −1.The details are a bit tricky. To begin with, when we permute the entries of a vector (, …,) by some permutation π, we move the entry of the input vector into the () slot of the output vector.

  8. Vectorization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Vectorization_(mathematics)

    Multiplication of X by e i extracts the i-th column, while multiplication by B i puts it into the desired position in the final vector. Alternatively, the linear sum can be expressed using the Kronecker product : vec ⁡ ( X ) = ∑ i = 1 n e i ⊗ X e i {\displaystyle \operatorname {vec} (\mathbf {X} )=\sum _{i=1}^{n}\mathbf {e} _{i}\otimes ...

  9. Matrix decomposition - Wikipedia

    en.wikipedia.org/wiki/Matrix_decomposition

    Decomposition: = where C is an m-by-r full column rank matrix and F is an r-by-n full row rank matrix Comment: The rank factorization can be used to compute the Moore–Penrose pseudoinverse of A , [ 2 ] which one can apply to obtain all solutions of the linear system A x = b {\displaystyle A\mathbf {x} =\mathbf {b} } .