Search results
Results from the WOW.Com Content Network
In mathematics and computer science, polynomial evaluation refers to computation of the value of a polynomial when its indeterminates are substituted for some values. In other words, evaluating the polynomial at consists of computing See also Polynomial ring § Polynomial evaluation. For evaluating the univariate polynomial the most naive ...
0.5 │ 4 −6 0 3 −5 │ 2 −2 −1 1 └─────────────────────── 2 −2 −1 1 −4 The third row is the sum of the first two rows, divided by 2. Each entry in the second row is the product of 1 with the third-row entry to the left.
Solving an equation symbolically means that expressions can be used for representing the solutions. For example, the equation x + y = 2x – 1 is solved for the unknown x by the expression x = y + 1, because substituting y + 1 for x in the equation results in (y + 1) + y = 2 (y + 1) – 1, a true statement. It is also possible to take the ...
Transcendental equation. Equation whose side (s) describe a transcendental function. John Herschel, Description of a machine for resolving by inspection certain important forms of transcendental equations, 1832. In applied mathematics, a transcendental equation is an equation over the real (or complex) numbers that is not algebraic, that is, if ...
In algebra, synthetic division is a method for manually performing Euclidean division of polynomials, with less writing and fewer calculations than long division. It is mostly taught for division by linear monic polynomials (known as Ruffini's rule), but the method can be generalized to division by any polynomial.
An expression is often used to define a function, by taking the variables to be arguments, or inputs, of the function, and assigning the output to be the evaluation of the resulting expression. [5] For example, and define the function that associates to each number its square plus one. An expression with no variables would define a constant ...
is a horizontal line with y-intercept a0. The graph of a degree 1 polynomial (or linear function) f(x) = a0 + a1x, where a1 ≠ 0, is an oblique line with y-intercept a0 and slope a1. The graph of a degree 2 polynomial. f(x) = a0 + a1x + a2x2, where a2 ≠ 0. is a parabola. The graph of a degree 3 polynomial.
The Hermite polynomials (probabilist's or physicist's) form an orthogonal basis of the Hilbert space of functions satisfying in which the inner product is given by the integral including the Gaussian weight function w(x) defined in the preceding section. An orthogonal basis for L2 (R, w (x) dx) is a complete orthogonal system.