enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Polynomial evaluation - Wikipedia

    en.wikipedia.org/wiki/Polynomial_evaluation

    In mathematics and computer science, polynomial evaluation refers to computation of the value of a polynomial when its indeterminates are substituted for some values. In other words, evaluating the polynomial at consists of computing See also Polynomial ring § Polynomial evaluation. For evaluating the univariate polynomial the most naive ...

  3. Estrin's scheme - Wikipedia

    en.wikipedia.org/wiki/Estrin's_scheme

    In numerical analysis, Estrin's scheme (after Gerald Estrin), also known as Estrin's method, is an algorithm for numerical evaluation of polynomials.. Horner's method for evaluation of polynomials is one of the most commonly used algorithms for this purpose, and unlike Estrin's scheme it is optimal in the sense that it minimizes the number of multiplications and additions required to evaluate ...

  4. Horner's method - Wikipedia

    en.wikipedia.org/wiki/Horner's_method

    In binary (base-2) math, multiplication by a power of 2 is merely a register shift operation. Thus, multiplying by 2 is calculated in base-2 by an arithmetic shift. The factor (2 −1) is a right arithmetic shift, a (0) results in no operation (since 2 0 = 1 is the multiplicative identity element), and a (2 1) results in a left arithmetic shift ...

  5. Descartes' rule of signs - Wikipedia

    en.wikipedia.org/wiki/Descartes'_rule_of_signs

    [2] [3] In the 1970s Askold Khovanskii developed the theory of fewnomials that generalises Descartes' rule. [4] The rule of signs can be thought of as stating that the number of real roots of a polynomial is dependent on the polynomial's complexity, and that this complexity is proportional to the number of monomials it has, not its degree.

  6. Equation solving - Wikipedia

    en.wikipedia.org/wiki/Equation_solving

    Solving an equation symbolically means that expressions can be used for representing the solutions. For example, the equation x + y = 2x – 1 is solved for the unknown x by the expression x = y + 1, because substituting y + 1 for x in the equation results in (y + 1) + y = 2 (y + 1) – 1, a true statement. It is also possible to take the ...

  7. Synthetic division - Wikipedia

    en.wikipedia.org/wiki/Synthetic_division

    E.g.: x**2 + 3*x + 5 will be represented as [1, 3, 5] """ out = list (dividend) # Copy the dividend normalizer = divisor [0] for i in range (len (dividend)-len (divisor) + 1): # For general polynomial division (when polynomials are non-monic), # we need to normalize by dividing the coefficient with the divisor's first coefficient out [i ...

  8. AOL Mail

    mail.aol.com

    You can find instant answers on our AOL Mail help page. Should you need additional assistance we have experts available around the clock at 800-730-2563.

  9. Newton polynomial - Wikipedia

    en.wikipedia.org/wiki/Newton_polynomial

    In the mathematical field of numerical analysis, a Newton polynomial, named after its inventor Isaac Newton, [1] is an interpolation polynomial for a given set of data points. The Newton polynomial is sometimes called Newton's divided differences interpolation polynomial because the coefficients of the polynomial are calculated using Newton's ...