Search results
Results from the WOW.Com Content Network
A finite regular continued fraction, where is a non-negative integer, is an integer, and is a positive integer, for . A continued fraction is a mathematical expression that can be writen as a fraction with a denominator that is a sum that contains another simple or continued fraction. Depending on whether this iteration terminates with a simple ...
Particular values of the gamma function. The gamma function is an important special function in mathematics. Its particular values can be expressed in closed form for integer and half-integer arguments, but no simple expressions are known for the values at rational points in general.
30° and 60°. The values of sine and cosine of 30 and 60 degrees are derived by analysis of the equilateral triangle. In an equilateral triangle, the 3 angles are equal and sum to 180°, therefore each corner angle is 60°. Bisecting one corner, the special right triangle with angles 30-60-90 is obtained.
The gamma function then is defined in the complex plane as the analytic continuation of this integral function: it is a meromorphic function which is holomorphic except at zero and the negative integers, where it has simple poles. The gamma function has no zeros, so the reciprocal gamma function 1 / Γ(z) is an entire function.
Each curve passes through the point (0, 1) because any nonzero number raised to the power of 0 is 1. At x = 1, the value of y equals the base because any number raised to the power of 1 is the number itself. In mathematics, exponentiation is an operation involving two numbers: the base and the exponent or power.
If (1 + z)1/2 = 1 + a1 z + a2 z2 + ⋯ is the binomial expansion for the square root (valid in | z | < 1), then as a formal power series its square equals 1 + z. Substituting N for z, only finitely many terms will be non-zero and S = √λ (I + a1 N + a2 N2 + ⋯) gives a square root of the Jordan block with eigenvalue √λ.
The golden ratio φ and its negative reciprocal −φ −1 are the two roots of the quadratic polynomial x 2 − x − 1. The golden ratio's negative −φ and reciprocal φ −1 are the two roots of the quadratic polynomial x 2 + x − 1. The golden ratio is also an algebraic number and even an algebraic integer. It has minimal polynomial
Starting at 0, add 1 for each cell whose distance to the origin (0,0) is less than or equal to r. When finished, divide the sum, representing the area of a circle of radius r, by r2 to find the approximation of π. For example, if r is 5, then the cells considered are: (−5,5) (−4,5)