enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Odds - Wikipedia

    en.wikipedia.org/wiki/Odds

    For example, given that there is a pattern of odds of 5/4, 7/4, 9/4 and so on, odds which are mathematically 3/2 are more easily compared if expressed in the equivalent form 6/4. Fractional odds are also known as British odds, UK odds, [9] or, in that country, traditional odds. They are typically represented with a "/" but can also be ...

  3. Percentage - Wikipedia

    en.wikipedia.org/wiki/Percentage

    In mathematics, a percentage (from Latin per centum 'by a hundred') is a number or ratio expressed as a fraction of 100. It is often denoted using the percent sign (%), [1] although the abbreviations pct., pct, and sometimes pc are also used. [2] A percentage is a dimensionless number (pure number), primarily used for expressing proportions ...

  4. Continued fraction (generalized) - Wikipedia

    en.wikipedia.org/wiki/Continued_fraction...

    Continued fractions can also be applied to problems in number theory, and are especially useful in the study of Diophantine equations. In the late eighteenth century Lagrange used continued fractions to construct the general solution of Pell's equation, thus answering a question that had fascinated mathematicians for more than a thousand years. [9]

  5. Fraction - Wikipedia

    en.wikipedia.org/wiki/Fraction

    A simple fraction (also known as a common fraction or vulgar fraction, where vulgar is Latin for "common") is a rational number written as a / b or ⁠ ⁠, where a and b are both integers. [9] As with other fractions, the denominator (b) cannot be zero. Examples include ⁠ 1 2 ⁠, − ⁠ 8 5 ⁠, ⁠ −8 5 ⁠, and ⁠ 8 −5 ⁠.

  6. Rhind Mathematical Papyrus - Wikipedia

    en.wikipedia.org/wiki/Rhind_Mathematical_Papyrus

    Problems 1–6 compute divisions of a certain number of loaves of bread by 10 men and record the outcome in unit fractions. Problems 7–20 show how to multiply the expressions 1 + 1/2 + 1/4 = 7/4, and 1 + 2/3 + 1/3 = 2 by different fractions. Problems 21–23 are problems in completion, which in modern notation are simply subtraction problems.

  7. Pareto principle - Wikipedia

    en.wikipedia.org/wiki/Pareto_principle

    Pareto principle. The Pareto principle may apply to fundraising, i.e. 20% of the donors contributing towards 80% of the total. The Pareto principle (also known as the 80/20 rule, the law of the vital few and the principle of factor sparsity[1][2]) states that for many outcomes, roughly 80% of consequences come from 20% of causes (the "vital few").

  8. Pi - Wikipedia

    en.wikipedia.org/wiki/Pi

    Truncating the continued fraction at any point yields a rational approximation for π; the first four of these are 3, ⁠ 22 / 7 ⁠, ⁠ 333 / 106 ⁠, and ⁠ 355 / 113 ⁠. These numbers are among the best-known and most widely used historical approximations of the constant.

  9. Birthday problem - Wikipedia

    en.wikipedia.org/wiki/Birthday_problem

    It is possible to extend the problem to ask how many people in a group are necessary for there to be a greater than 50% probability that at least 3, 4, 5, etc. of the group share the same birthday. The first few values are as follows: >50% probability of 3 people sharing a birthday - 88 people; >50% probability of 4 people sharing a birthday ...