Search results
Results from the WOW.Com Content Network
A yaw rotation is a movement around the yaw axis of a rigid body that changes the direction it is pointing, to the left or right of its direction of motion. The yaw rate or yaw velocity of a car, aircraft, projectile or other rigid body is the angular velocity of this rotation, or rate of change of the heading angle when the aircraft is horizontal.
The three critical flight dynamics parameters are the angles of rotation in three dimensions about the vehicle's center of gravity (cg), known as pitch, roll and yaw. These are collectively known as aircraft attitude , often principally relative to the atmospheric frame in normal flight, but also relative to terrain during takeoff or landing ...
The yaw axis has its origin at the center of gravity and is directed towards the bottom of the aircraft, perpendicular to the wings and to the fuselage reference line. Motion about this axis is called yaw. A positive yawing motion moves the nose of the aircraft to the right. [1] [2] The rudder is the primary control of yaw. [3]
An aircraft moves at any given moment in one or more of three axes: roll (the axis that runs the length of the fuselage), pitch (the axis running laterally through the wings), and yaw (the vertical axis around which the front of the aircraft turns to the left or right whilst its rear turns toward the opposite direction).
Yaw is known as "heading". A fixed-wing aircraft increases or decreases the lift generated by the wings when it pitches nose up or down by increasing or decreasing the angle of attack (AOA). The roll angle is also known as bank angle on a fixed-wing aircraft, which usually "banks" to change the horizontal direction of flight.
P-Factor therefore determines which engine is critical engine. [6] For most aircraft (which have clockwise rotating propellers), the left engine is the critical engine. For aircraft with counter-rotating propellers (i.e. not rotating in the same direction) the P-factor moments are equal and both engines are considered equally critical. Fig. 1.
Rotation about this axis is called yaw. [3] Yaw changes the direction the aircraft's nose is pointing, left or right. The primary control of yaw is with the rudder. Ailerons also have a secondary effect on yaw. These axes move with the aircraft and change relative to the earth as the aircraft moves.
Aircraft flight mechanics are relevant to fixed wing (gliders, aeroplanes) and rotary wing (helicopters) aircraft. An aeroplane ( airplane in US usage), is defined in ICAO Document 9110 as, "a power-driven heavier than air aircraft, deriving its lift chiefly from aerodynamic reactions on surface which remain fixed under given conditions of flight".