Search results
Results from the WOW.Com Content Network
The months are a cyclic order. In mathematics, a cyclic order is a way to arrange a set of objects in a circle. Unlike most structures in order theory, a cyclic order is not modeled as a binary relation, such as "a < b". One does not say that east is "more clockwise" than west.
Every cyclic group of prime order is a simple group, which cannot be broken down into smaller groups. In the classification of finite simple groups, one of the three infinite classes consists of the cyclic groups of prime order. The cyclic groups of prime order are thus among the building blocks from which all groups can be built.
Small groups of prime power order p n are given as follows: Order p: The only group is cyclic. Order p 2: There are just two groups, both abelian. Order p 3: There are three abelian groups, and two non-abelian groups. One of the non-abelian groups is the semidirect product of a normal cyclic subgroup of order p 2 by a cyclic group of order p.
Cyclic number, a number such that cyclic permutations of the digits are successive multiples of the number; Cyclic order, a ternary relation defining a way to arrange a set of objects in a circle; Cyclic permutation, a permutation with one nontrivial orbit; Cyclic polygon, a polygon which can be given a circumscribed circle
Since a linear order induces a cyclic order, cyclically ordered groups are also a generalization of linearly ordered groups: the rational numbers Q, the real numbers R, and so on. Some of the most important cyclically ordered groups fall into neither previous category: the circle group T and its subgroups , such as the subgroup of rational points .
The order of the outer automorphism group is written as d⋅f⋅g, where d is the order of the group of "diagonal automorphisms", f is the order of the (cyclic) group of "field automorphisms" (generated by a Frobenius automorphism), and g is the order of the group of "graph automorphisms" (coming from automorphisms of the Dynkin diagram).
The order of an element of a group (also called period length or period) is the order of the subgroup generated by the element. If the group operation is denoted as a multiplication , the order of an element a of a group, is thus the smallest positive integer m such that a m = e , where e denotes the identity element of the group, and a m ...
In abstract algebra, every subgroup of a cyclic group is cyclic. Moreover, for a finite cyclic group of order n, every subgroup's order is a divisor of n, and there is exactly one subgroup for each divisor. [1] [2] This result has been called the fundamental theorem of cyclic groups. [3] [4]