Ads
related to: continuous time and discrete systems of equations worksheetteacherspayteachers.com has been visited by 100K+ users in the past month
- Free Resources
Download printables for any topic
at no cost to you. See what's free!
- Lessons
Powerpoints, pdfs, and more to
support your classroom instruction.
- Assessment
Creative ways to see what students
know & help them with new concepts.
- Projects
Get instructions for fun, hands-on
activities that apply PK-12 topics.
- Free Resources
kutasoftware.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
Unlike a continuous-time signal, a discrete-time signal is not a function of a continuous argument; however, it may have been obtained by sampling from a continuous-time signal. When a discrete-time signal is obtained by sampling a sequence at uniformly spaced times, it has an associated sampling rate. Discrete-time signals may have several ...
Writing in 1931, Andrei Kolmogorov started from the theory of discrete time Markov processes, which are described by the Chapman–Kolmogorov equation, and sought to derive a theory of continuous time Markov processes by extending this equation. He found that there are two kinds of continuous time Markov processes, depending on the assumed ...
One type of iteration can be obtained in the discrete time case by using the dynamic Riccati equation that arises in the finite-horizon problem: in the latter type of problem each iteration of the value of the matrix is relevant for optimal choice at each period that is a finite distance in time from a final time period, and if it is iterated ...
In particular, the discrete-time Lyapunov equation (also known as Stein equation) for is A X A H − X + Q = 0 {\displaystyle AXA^{H}-X+Q=0} where Q {\displaystyle Q} is a Hermitian matrix and A H {\displaystyle A^{H}} is the conjugate transpose of A {\displaystyle A} , while the continuous-time Lyapunov equation is
In applied mathematics, discretization is the process of transferring continuous functions, models, variables, and equations into discrete counterparts. This process is usually carried out as a first step toward making them suitable for numerical evaluation and implementation on digital computers.
The continuous-time case is similar to the discrete-time case but now one considers differential equations instead of difference equations: ˙ = + (), = + ().An added complication now however is that to include interesting physical examples such as partial differential equations and delay differential equations into this abstract framework, one is forced to consider unbounded operators.
Ads
related to: continuous time and discrete systems of equations worksheetteacherspayteachers.com has been visited by 100K+ users in the past month
kutasoftware.com has been visited by 10K+ users in the past month