Search results
Results from the WOW.Com Content Network
The golden ratio φ and its negative reciprocal −φ −1 are the two roots of the quadratic polynomial x 2 − x − 1. The golden ratio's negative −φ and reciprocal φ −1 are the two roots of the quadratic polynomial x 2 + x − 1. The golden ratio is also an algebraic number and even an algebraic integer.
In geometry, a golden rectangle is a rectangle with side lengths in golden ratio +:, or :, with approximately equal to 1.618 or 89/55. Golden rectangles exhibit a special form of self-similarity : if a square is added to the long side, or removed from the short side, the result is a golden rectangle as well.
A golden triangle. The ratio a/b is the golden ratio φ. The vertex angle is =.Base angles are 72° each. Golden gnomon, having side lengths 1, 1, and .. A golden triangle, also called a sublime triangle, [1] is an isosceles triangle in which the duplicated side is in the golden ratio to the base side:
The golden ratio budget echoes the more widely known 50-30-20 budget that recommends spending 50% of your income on needs, 30% on wants and 20% on savings and debt. The “needs” category covers ...
The first of these quadratic inequalities requires r to range in the region beyond the value of the positive root of the quadratic equation r 2 + r − 1 = 0, i.e. r > φ − 1 where φ is the golden ratio. The second quadratic inequality requires r to range between 0 and the positive root of the quadratic equation r 2 − r − 1 = 0, i.e. 0 ...
The ratio of the progression of side lengths is , where = (+) / is the golden ratio, and the progression can be written: ::, or approximately 1 : 1.272 : 1.618. Squares on the edges of this triangle have areas in another geometric progression, 1 : φ : φ 2 {\displaystyle 1:\varphi :\varphi ^{2}} .
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
For if the algorithm requires N steps, then b is greater than or equal to F N+1 which in turn is greater than or equal to φ N−1, where φ is the golden ratio. Since b ≥ φ N−1, then N − 1 ≤ log φ b. Since log 10 φ > 1/5, (N − 1)/5 < log 10 φ log φ b = log 10 b. Thus, N ≤ 5 log 10 b.