Ads
related to: nusselt heat transferninjatransfers.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
The Nusselt number is the ratio of total heat transfer (convection + conduction) to conductive heat transfer across a boundary. The convection and conduction heat flows are parallel to each other and to the surface normal of the boundary surface, and are all perpendicular to the mean fluid flow in the simple case.
In convective heat transfer, the Churchill–Bernstein equation is used to estimate the surface averaged Nusselt number for a cylinder in cross flow at various velocities. [1] The need for the equation arises from the inability to solve the Navier–Stokes equations in the turbulent flow regime, even for a Newtonian fluid .
Nusselt number: Nu = heat transfer (forced convection; ratio of convective to conductive heat transfer) Ohnesorge number: Oh = = fluid dynamics (atomization of ...
For a correlation for a given geometry (e.g. spheres, plates, cylinders, etc.), a heat transfer correlation (often more readily available from literature and experimental work, and easier to determine) for the Nusselt number (Nu) in terms of the Reynolds number (Re) and the Prandtl number (Pr) can be used as a mass transfer correlation by ...
The heat transfer coefficient is often calculated from the Nusselt number (a dimensionless number). There are also online calculators available specifically for Heat-transfer fluid applications. Experimental assessment of the heat transfer coefficient poses some challenges especially when small fluxes are to be measured (e.g. < 0.2 W/cm 2 ).
The Stanton number, St, is a dimensionless number that measures the ratio of heat transferred into a fluid to the thermal capacity of fluid. The Stanton number is named after Thomas Stanton (engineer) (1865–1931). [1] [2]: 476 It is used to characterize heat transfer in forced convection flows.
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
Similarly, the conductive heat transfer from the gas to the droplet can be expressed as a function of the Nusselt number. The Nusselt number describes a non-dimensional heat transfer rate to the droplet and is defined as: [3]
Ads
related to: nusselt heat transferninjatransfers.com has been visited by 10K+ users in the past month