enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cardinality - Wikipedia

    en.wikipedia.org/wiki/Cardinality

    Bijective function from N to the set E of even numbers. Although E is a proper subset of N, both sets have the same cardinality. N does not have the same cardinality as its power set P(N): For every function f from N to P(N), the set T = {n∈N: n∉f(n)} disagrees with every set in the range of f, hence f cannot be surjective.

  3. Cardinal number - Wikipedia

    en.wikipedia.org/wiki/Cardinal_number

    Cardinality can be used to compare an aspect of finite sets. For example, the sets {1,2,3} and {4,5,6} are not equal, but have the same cardinality, namely three. This is established by the existence of a bijection (i.e., a one-to-one correspondence) between the two sets, such as the correspondence {1→4, 2→5, 3→6}.

  4. List of representations of e - Wikipedia

    en.wikipedia.org/wiki/List_of_representations_of_e

    A unique representation of e can be found within the structure of Pascal's Triangle, as discovered by Harlan Brothers. Pascal's Triangle is composed of binomial coefficients, which are traditionally summed to derive polynomial expansions. However, Brothers identified a product-based relationship between these coefficients that links to e.

  5. Cardinal function - Wikipedia

    en.wikipedia.org/wiki/Cardinal_function

    Cardinal functions are widely used in topology as a tool for describing various topological properties. [2] [3] Below are some examples.(Note: some authors, arguing that "there are no finite cardinal numbers in general topology", [4] prefer to define the cardinal functions listed below so that they never taken on finite cardinal numbers as values; this requires modifying some of the ...

  6. Cardinal assignment - Wikipedia

    en.wikipedia.org/wiki/Cardinal_assignment

    The goal of a cardinal assignment is to assign to every set A a specific, unique set that is only dependent on the cardinality of A. This is in accordance with Cantor 's original vision of cardinals: to take a set and abstract its elements into canonical "units" and collect these units into another set, such that the only thing special about ...

  7. Beth number - Wikipedia

    en.wikipedia.org/wiki/Beth_number

    so that the second beth number is equal to , the cardinality of the continuum (the cardinality of the set of the real numbers), and the third beth number is the cardinality of the power set of the continuum.

  8. Cardinality of the continuum - Wikipedia

    en.wikipedia.org/wiki/Cardinality_of_the_continuum

    In set theory, the cardinality of the continuum is the cardinality or "size" of the set of real numbers, sometimes called the continuum. It is an infinite cardinal ...

  9. Cardinality (data modeling) - Wikipedia

    en.wikipedia.org/wiki/Cardinality_(data_modeling)

    Within data modelling, cardinality is the numerical relationship between rows of one table and rows in another. Common cardinalities include one-to-one , one-to-many , and many-to-many . Cardinality can be used to define data models as well as analyze entities within datasets.