enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Arithmetic progression - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_progression

    For instance, the sequence 5, 7, 9, 11, 13, 15, . . . is an arithmetic progression with a common difference of 2. If the initial term of an arithmetic progression is a 1 {\displaystyle a_{1}} and the common difference of successive members is d {\displaystyle d} , then the n {\displaystyle n} -th term of the sequence ( a n {\displaystyle a_{n ...

  3. Problems involving arithmetic progressions - Wikipedia

    en.wikipedia.org/wiki/Problems_involving...

    The sequence of primes numbers contains arithmetic progressions of any length. This result was proven by Ben Green and Terence Tao in 2004 and is now known as the Green–Tao theorem. [3] See also Dirichlet's theorem on arithmetic progressions. As of 2020, the longest known arithmetic progression of primes has length 27: [4]

  4. Primes in arithmetic progression - Wikipedia

    en.wikipedia.org/wiki/Primes_in_arithmetic...

    In number theory, primes in arithmetic progression are any sequence of at least three prime numbers that are consecutive terms in an arithmetic progression. An example is the sequence of primes (3, 7, 11), which is given by a n = 3 + 4 n {\displaystyle a_{n}=3+4n} for 0 ≤ n ≤ 2 {\displaystyle 0\leq n\leq 2} .

  5. List of theorems - Wikipedia

    en.wikipedia.org/wiki/List_of_theorems

    Dirichlet's theorem on arithmetic progressions (number theory) Dirichlet's unit theorem (algebraic number theory) Disintegration theorem (measure theory) Divergence theorem (vector calculus) Dominated convergence theorem (Lebesgue integration) Donaldson's theorem (differential topology) Donsker's theorem (probability theory)

  6. Roth's theorem on arithmetic progressions - Wikipedia

    en.wikipedia.org/wiki/Roth's_Theorem_on...

    Roth's theorem on arithmetic progressions (infinite version): A subset of the natural numbers with positive upper density contains a 3-term arithmetic progression. An alternate, more qualitative, formulation of the theorem is concerned with the maximum size of a Salem–Spencer set which is a subset of [ N ] = { 1 , … , N } {\displaystyle [N ...

  7. Dirichlet's theorem on arithmetic progressions - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_theorem_on...

    Dirichlet, P. G. L. (1837), "Beweis des Satzes, dass jede unbegrenzte arithmetische Progression, deren erstes Glied und Differenz ganze Zahlen ohne gemeinschaftlichen Factor sind, unendlich viele Primzahlen enthält" [Proof of the theorem that every unbounded arithmetic progression, whose first term and common difference are integers without ...

  8. Portal:Arithmetic - Wikipedia

    en.wikipedia.org/wiki/Portal:Arithmetic

    In mathematics, summation is the addition of a sequence of numbers, called addends or summands; the result is their sum or total. Beside numbers, other types of values can be summed as well: functions , vectors , matrices , polynomials and, in general, elements of any type of mathematical objects on which an operation denoted "+" is defined.

  9. Salem–Spencer set - Wikipedia

    en.wikipedia.org/wiki/Salem–Spencer_set

    In mathematics, and in particular in arithmetic combinatorics, a Salem-Spencer set is a set of numbers no three of which form an arithmetic progression. Salem–Spencer sets are also called 3-AP-free sequences or progression-free sets .