Search results
Results from the WOW.Com Content Network
ACI 318 Building Code Requirements for Structural Concrete provides minimum requirements necessary to provide public health and safety for the design and construction of structural concrete buildings. [6] It is issued and maintained by the American Concrete Institute. [7] The latest edition of the code is ACI 318-19.
The modified compression field theory (MCFT) is a general model for the load-deformation behaviour of two-dimensional cracked reinforced concrete subjected to shear. It models concrete considering concrete stresses in principal directions summed with reinforcing stresses assumed to be only axial.
Language links are at the top of the page across from the title.
Mohr–Coulomb theory is a mathematical model (see yield surface) describing the response of brittle materials such as concrete, or rubble piles, to shear stress as well as normal stress. Most of the classical engineering materials follow this rule in at least a portion of their shear failure envelope.
Shown here is an exterior shear reinforcement of a conventional reinforced concrete dormitory building. In this case, there was sufficient vertical strength in the building columns and sufficient shear strength in the lower stories that only limited shear reinforcement was required to make it earthquake resistant for this location near the ...
The tension failure loads predicted by the CCD method fits experimental results over a wide range of embedment depth (e.g. 100 – 600 mm). [2] Anchor load bearing capacity provided by ACI 349 does not consider size effect, thus an underestimated value for the load-carrying capacity is obtained for large embedment depths.
Concrete has a very low coefficient of thermal expansion, and as it matures concrete shrinks. All concrete structures will crack to some extent, due to shrinkage and tension. Concrete which is subjected to long-duration forces is prone to creep. The density of concrete varies, but is around 2,400 kilograms per cubic metre (150 lb/cu ft). [1]
Shear and Bending moment diagram for a simply supported beam with a concentrated load at mid-span. Shear force and bending moment diagrams are analytical tools used in conjunction with structural analysis to help perform structural design by determining the value of shear forces and bending moments at a given point of a structural element such as a beam.