Search results
Results from the WOW.Com Content Network
The transitive closure of the adjacency relation of a directed acyclic graph (DAG) is the reachability relation of the DAG and a strict partial order. A cluster graph, the transitive closure of an undirected graph. The transitive closure of an undirected graph produces a cluster graph, a disjoint union of cliques.
The transitive closure of a DAG is the graph with the most edges that has the same reachability relation as the DAG. It has an edge u → v for every pair of vertices ( u , v ) in the reachability relation ≤ of the DAG, and may therefore be thought of as a direct translation of the reachability relation ≤ into graph-theoretic terms.
For a directed graph = (,), with vertex set and edge set , the reachability relation of is the transitive closure of , which is to say the set of all ordered pairs (,) of vertices in for which there exists a sequence of vertices =,,,..., = such that the edge (,) is in for all .
Specifically, taking a strict partial order relation (, <), a directed acyclic graph (DAG) may be constructed by taking each element of to be a node and each element of < to be an edge. The transitive reduction of this DAG [b] is then the Hasse diagram. Similarly this process can be reversed to construct strict partial orders from certain DAGs.
closure 1. For the transitive closure of a directed graph, see transitive. 2. A closure of a directed graph is a set of vertices that have no outgoing edges to vertices outside the closure. For instance, a sink is a one-vertex closure. The closure problem is the problem of finding a closure of minimum or maximum weight. co-
The Floyd–Warshall algorithm is an example of dynamic programming, and was published in its currently recognized form by Robert Floyd in 1962. [3] However, it is essentially the same as algorithms previously published by Bernard Roy in 1959 [4] and also by Stephen Warshall in 1962 [5] for finding the transitive closure of a graph, [6] and is closely related to Kleene's algorithm (published ...
By definition, . This is an asymmetric relation (two elements can only be related in one direction, not the other) and it inherits the property of being a transitive relation from the transitivity of reachability. Therefore, it defines a total ordering on the weak components.
while looking at the transitive closure of a system (all nodes downstream from a node), a node in its own transitive closure indicates a circularity; while looking at the transitive closure of a system, subsumption between pairs of rows indicates redundancy; conflicts are somewhat more difficult as they become more semantic than syntactic.