enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Feature selection - Wikipedia

    en.wikipedia.org/wiki/Feature_selection

    In machine learning, feature selection is the process of selecting a subset of relevant features (variables, predictors) for use in model construction. Feature selection techniques are used for several reasons: simplification of models to make them easier to interpret, [1] shorter training times, [2] to avoid the curse of dimensionality, [3]

  3. Feature engineering - Wikipedia

    en.wikipedia.org/wiki/Feature_engineering

    Feature engineering in machine learning and statistical modeling involves selecting, creating, transforming, and extracting data features. Key components include feature creation from existing data, transforming and imputing missing or invalid features, reducing data dimensionality through methods like Principal Components Analysis (PCA), Independent Component Analysis (ICA), and Linear ...

  4. Feature learning - Wikipedia

    en.wikipedia.org/wiki/Feature_learning

    The hierarchical architecture of the biological neural system inspires deep learning architectures for feature learning by stacking multiple layers of learning nodes. [23] These architectures are often designed based on the assumption of distributed representation : observed data is generated by the interactions of many different factors on ...

  5. Random subspace method - Wikipedia

    en.wikipedia.org/wiki/Random_subspace_method

    In machine learning the random subspace method, [1] also called attribute bagging [2] or feature bagging, is an ensemble learning method that attempts to reduce the correlation between estimators in an ensemble by training them on random samples of features instead of the entire feature set.

  6. Feature (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Feature_(machine_learning)

    In machine learning and pattern recognition, a feature is an individual measurable property or characteristic of a data set. [1] Choosing informative, discriminating, and independent features is crucial to produce effective algorithms for pattern recognition , classification , and regression tasks.

  7. Relief (feature selection) - Wikipedia

    en.wikipedia.org/wiki/Relief_(feature_selection)

    Relief is an algorithm developed by Kira and Rendell in 1992 that takes a filter-method approach to feature selection that is notably sensitive to feature interactions. [1] [2] It was originally designed for application to binary classification problems with discrete or numerical features.

  8. Discover the best free online games at AOL.com - Play board, card, casino, puzzle and many more online games while chatting with others in real-time.

  9. Ensemble learning - Wikipedia

    en.wikipedia.org/wiki/Ensemble_learning

    Cross-Validation Selection can be summed up as: "try them all with the training set, and pick the one that works best". [32] Gating is a generalization of Cross-Validation Selection. It involves training another learning model to decide which of the models in the bucket is best-suited to solve the problem.