Search results
Results from the WOW.Com Content Network
Piezoelectric balance presented by Pierre Curie to Lord Kelvin, Hunterian Museum, Glasgow. Piezoelectricity (/ ˌ p iː z oʊ-, ˌ p iː t s oʊ-, p aɪ ˌ iː z oʊ-/, US: / p i ˌ eɪ z oʊ-, p i ˌ eɪ t s oʊ-/) [1] is the electric charge that accumulates in certain solid materials—such as crystals, certain ceramics, and biological matter such as bone, DNA, and various proteins—in ...
A piezoelectric disk generates a voltage when deformed (change in shape is greatly exaggerated) A piezoelectric sensor is a device that uses the piezoelectric effect to measure changes in pressure, acceleration, temperature, strain, or force by converting them to an electrical charge. The prefix piezo-is Greek for 'press' or 'squeeze'. [1]
The piezoelectric coefficient or piezoelectric modulus, usually written d 33, quantifies the volume change when a piezoelectric material is subject to an electric field, or the polarization on the application of stress.
Working mechanism for piezoelectric devices with one end of the piezoelectric material is fixed. The induced piezopotential distribution is similar to the applied gate voltage in a traditional field-effect transistor, as shown in (b). Schematic diagram showing the three-way coupling among piezoelectricity, photoexcitation and semiconductor.
Quartz is one member of a family of crystals that experience the piezoelectric effect.The piezoelectric effect has found applications in high power sources, sensors, actuators, frequency standards, motors, etc., and the relationship between applied voltage and mechanical deformation is well known; this allows probing an acoustic resonance by electrical means.
Piezoelectric polymers (PVDF, 240 mV-m/N) possess higher piezoelectric stress constants (g 33), an important parameter in sensors, than ceramics (PZT, 11 mV-m/N), which show that they can be better sensors than ceramics. Moreover, piezoelectric polymeric sensors and actuators, due to their processing flexibility, can be readily manufactured ...
There are 21 non-centrosymmetric classes, within which 20 are piezoelectric. Among the piezoelectric classes, 10 have a spontaneous electric polarization which varies with temperature; thus they are pyroelectric. Ferroelectricity is a subset of pyroelectricity, which brings spontaneous electronic polarization to the material. [23]
The Sauerbrey equation was developed by the German Günter Sauerbrey in 1959, while working on his doctoral thesis at Technische Universität Berlin, Germany. It is a method for correlating changes in the oscillation frequency of a piezoelectric crystal with the mass deposited on it. He simultaneously developed a method for measuring the ...