Search results
Results from the WOW.Com Content Network
Tantalum carbide is widely used as sintering additive in ultra-high temperature ceramics (UHTCs) or as a ceramic reinforcement in high-entropy alloys (HEAs) due to its excellent physical properties in melting point, hardness, elastic modulus, thermal conductivity, thermal shock resistance, and chemical stability, which makes it a desirable ...
Tantalum carbide, TaC, like the more commonly used tungsten carbide, is a hard ceramic that is used in cutting tools. Tantalum(III) nitride is used as a thin film insulator in some microelectronic fabrication processes.
This page was last edited on 16 November 2024, at 12:16 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
Tantalcarbide is a rare mineral of tantalum carbide with formula TaC. With a molecular weight of 192.96 g/mol, its primary constituents are tantalum (93.78%) and carbon (6.22%), and has an isometric crystal system. [2] It generally exhibits a bronze or brown to yellow color. On the Mohs hardness scale it registers as a 6–7. [3]
The first cemented carbide developed was tungsten carbide (introduced in 1927) which uses tungsten carbide particles held together by a cobalt metal binder. Since then, other cemented carbides have been developed, such as titanium carbide, which is better suited for cutting steel, and tantalum carbide, which is tougher than tungsten carbide. [1]
[1] [3] [page needed] The properties of these superalloys can be tailored to a certain extent through the addition of various other elements, common or exotic, including not only metals, but also metalloids and nonmetals; chromium, iron, cobalt, molybdenum, tungsten, tantalum, aluminium, titanium, zirconium, niobium, rhenium, yttrium, vanadium ...
The definition of which elements belong to this group differs. The most common definition includes five elements: two of the fifth period (niobium and molybdenum) and three of the sixth period (tantalum, tungsten, and rhenium). They all share some properties, including a melting point above 2000 °C and high hardness at room temperature. They ...
Binary compounds such as tungsten carbide or boron nitride can be very refractory. Hafnium carbide is the most refractory binary compound known, with a melting point of 3890 °C. [8] [9] The ternary compound tantalum hafnium carbide has one of the highest melting points of all known compounds (4215 °C). [10] [11]