Search results
Results from the WOW.Com Content Network
Signal-to-noise ratio (SNR or S/N) is a measure used in science and engineering that compares the level of a desired signal to the level of background noise. SNR is defined as the ratio of signal power to noise power , often expressed in decibels .
The ratio of (a) total received power, i.e., the signal to (b) the noise-plus-distortion power. This is modeled by the equation above. [2] The ratio of (a) the power of a test signal, i.e. a sine wave, to (b) the residual received power, i.e. noise-plus-distortion power. With this definition, it is possible to have a SINAD level less than one.
Signal-to-noise ratio (SNR), however, is the ratio between the noise floor and an arbitrary reference level or alignment level. In "professional" recording equipment, this reference level is usually +4 dBu (IEC 60268-17), though sometimes 0 dBu (UK and Europe – EBU standard Alignment level).
Traditionally, SNR is defined to be the ratio of the average signal value to the standard deviation of the signal : [2] [3] = when the signal is an optical intensity, or as the square of this value if the signal and noise are viewed as amplitudes (field quantities).
Signal averaging is a signal processing technique applied in the time domain, intended to increase the strength of a signal relative to noise that is obscuring it. By averaging a set of replicate measurements, the signal-to-noise ratio (SNR) will be increased, ideally in proportion to the square root of the number of measurements.
Peak signal-to-noise ratio (PSNR) is an engineering term for the ratio between the maximum possible power of a signal and the power of corrupting noise that affects the fidelity of its representation.
In telecommunications, the carrier-to-noise ratio, often written CNR or C/N, is the signal-to-noise ratio (SNR) of a modulated signal. The term is used to distinguish the CNR of the radio frequency passband signal from the SNR of an analog base band message signal after demodulation .
S is the total signal power over the bandwidth and N is the total noise power over the bandwidth. S/N is the signal-to-noise ratio of the communication signal to the Gaussian noise interference expressed as a straight power ratio (not as decibels). This 1.53 dB difference is called the shaping gap.