Search results
Results from the WOW.Com Content Network
Dask is an open-source Python library for parallel computing.Dask [1] scales Python code from multi-core local machines to large distributed clusters in the cloud. Dask provides a familiar user interface by mirroring the APIs of other libraries in the PyData ecosystem including: Pandas, scikit-learn and NumPy.
NumPy (pronounced / ˈ n ʌ m p aɪ / NUM-py) is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays. [3]
In the merge sort algorithm, this subroutine is typically used to merge two sub-arrays A[lo..mid], A[mid+1..hi] of a single array A. This can be done by copying the sub-arrays into a temporary array, then applying the merge algorithm above. [1] The allocation of a temporary array can be avoided, but at the expense of speed and programming ease.
Suppose that such an algorithm existed, then we could construct a comparison-based sorting algorithm with running time O(n f(n)) as follows: Chop the input array into n arrays of size 1. Merge these n arrays with the k-way merge algorithm. The resulting array is sorted and the algorithm has a running time in O(n f(n)).
Timsort has been Python's standard sorting algorithm since version 2.3 (since version 3.11 using the Powersort merge policy [5]), and is used to sort arrays of non-primitive type in Java SE 7, [6] on the Android platform, [7] in GNU Octave, [8] on V8, [9] Swift, [10] and inspired the sorting algorithm used in Rust.
a = [3, 1, 5, 7] // assign an array to the variable a a [0.. 1] // return the first two elements of a a [.. 1] // return the first two elements of a: the zero can be omitted a [2..] // return the element 3 till last one a [[0, 3]] // return the first and the fourth element of a a [[0, 3]] = [100, 200] // replace the first and the fourth element ...
Matrix multiplication is an example of a 2-rank function, because it operates on 2-dimensional objects (matrices). Collapse operators reduce the dimensionality of an input data array by one or more dimensions. For example, summing over elements collapses the input array by 1 dimension.
The outer loop of block sort is identical to a bottom-up merge sort, where each level of the sort merges pairs of subarrays, A and B, in sizes of 1, then 2, then 4, 8, 16, and so on, until both subarrays combined are the array itself.