Search results
Results from the WOW.Com Content Network
In electrochemistry, the Nernst equation is a chemical thermodynamical relationship that permits the calculation of the reduction potential of a reaction (half-cell or full cell reaction) from the standard electrode potential, absolute temperature, the number of electrons involved in the redox reaction, and activities (often approximated by concentrations) of the chemical species undergoing ...
1-Aminopentane is an organic compound with the formula CH 3 (CH 2) 4 NH 2. It is used as a solvent , as a raw material in the manufacture of a variety of other compounds, including dyes, emulsifiers , and pharmaceutical products, [ 1 ] and as a flavoring agent .
The and pH of a solution are related by the Nernst equation as commonly represented by a Pourbaix diagram (– pH plot).For a half cell equation, conventionally written as a reduction reaction (i.e., electrons accepted by an oxidant on the left side):
An example of the Hell–Volhard–Zelinsky reaction can be seen in the preparation of alanine from propionic acid.In the first step, a combination of bromine and phosphorus tribromide is used in the Hell–Volhard–Zelinsky reaction to prepare 2-bromopropionic acid, [3] which in the second step is converted to a racemic mixture of the amino acid product by ammonolysis.
In organic chemistry, the Mannich reaction is a three-component organic reaction that involves the amino alkylation of an acidic proton next to a carbonyl (C=O) functional group by formaldehyde (H−CHO) and a primary or secondary amine (−NH 2) or ammonia (NH 3). [1] The final product is a β-amino-carbonyl compound also known as a Mannich base.
The Hofmann rearrangement (Hofmann degradation) is the organic reaction of a primary amide to a primary amine with one less carbon atom. [1] [2] [3] The reaction involves oxidation of the nitrogen followed by rearrangement of the carbonyl and nitrogen to give an isocyanate intermediate.
Heterogeneous OER is sensitive to the surface which the reaction takes place and is also affected by the pH of the solution. The general mechanism for acidic and alkaline solutions is shown below. Under acidic conditions water binds to the surface with the irreversible removal of one electron and one proton to form a platinum hydroxide. [4]
The reactants are the lactol derived from L-phenyl-lactic acid and acetone, l-phenylalanine methyl ester and a boronic acid. The reaction takes place in ethanol at room temperature to give the product, an anti-1,2-amino alcohol with a high diastereomeric excess. [34] Petasis reaction example (Kumagai et al.)