enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eddy current - Wikipedia

    en.wikipedia.org/wiki/Eddy_current

    The magnetic field (B, green) is directed down through the plate. The Lorentz force of the magnetic field on the electrons in the metal induces a sideways current under the magnet. The magnetic field, acting on the sideways moving electrons, creates a Lorentz force opposite to the velocity of the sheet, which acts as a drag force on the sheet.

  3. Magnetization - Wikipedia

    en.wikipedia.org/wiki/Magnetization

    The magnetization field or M-field can be defined according to the following equation: =. Where is the elementary magnetic moment and is the volume element; in other words, the M-field is the distribution of magnetic moments in the region or manifold concerned.

  4. Magnetic field - Wikipedia

    en.wikipedia.org/wiki/Magnetic_field

    The magnetic field of larger magnets can be obtained by modeling them as a collection of a large number of small magnets called dipoles each having their own m. The magnetic field produced by the magnet then is the net magnetic field of these dipoles; any net force on the magnet is a result of adding up the forces on the individual dipoles.

  5. Magnetic circuit - Wikipedia

    en.wikipedia.org/wiki/Magnetic_circuit

    Magnetic field (green) induced by a current-carrying wire winding (red) in a magnetic circuit consisting of an iron core C forming a closed loop with two air gaps G in it. In an analogy to an electric circuit, the winding acts analogously to an electric battery, providing the magnetizing field , the core pieces act like wires, and the gaps G act like resistors.

  6. Magnetic Thermodynamic Systems - Wikipedia

    en.wikipedia.org/wiki/Magnetic_Thermodynamic_Systems

    Assuming the external magnetic field is uniform and shares a common axis with the paramagnet, the extensive parameter characterizing the magnetic state is , the magnetic dipole moment of the system. The fundamental thermodynamic relation describing the system will then be of the form U = U ( S , V , I , N ) {\displaystyle U=U(S,V,I,N)} .

  7. Magnetic hysteresis - Wikipedia

    en.wikipedia.org/wiki/Magnetic_hysteresis

    At zero field strength, the magnetization is offset from the origin by an amount called the remanence. If the H-M relationship is plotted for all strengths of applied magnetic field the result is a hysteresis loop called the main loop. The width of the middle section along the H axis is twice the coercivity of the material. [1]: Chapter 1

  8. Saturation (magnetic) - Wikipedia

    en.wikipedia.org/wiki/Saturation_(magnetic)

    Seen in some magnetic materials, saturation is the state reached when an increase in applied external magnetic field H cannot increase the magnetization of the material further, so the total magnetic flux density B more or less levels off. (Though, magnetization continues to increase very slowly with the field due to paramagnetism.)

  9. Hysteresis - Wikipedia

    en.wikipedia.org/wiki/Hysteresis

    At zero field strength, the magnetization is offset from the origin by an amount called the remanence. If the H-M relationship is plotted for all strengths of applied magnetic field the result is a hysteresis loop called the main loop. The width of the middle section is twice the coercivity of the material. [21]