Search results
Results from the WOW.Com Content Network
Of two isomers of butylbenzene, n-butylbenzene consists of a phenyl group attached to the 1 position of a butyl group. It is a slightly greasy, colorless liquid. The synthesis of n-butylbenzene by the reaction of chlorobenzene and butylmagnesium bromide was one of the first demonstrations of the Kumada coupling using nickel diphosphine ...
Crystalline potassium permanganate (KMnO 4) is placed in an evaporating dish. A depression is made at the center of the permanganate powder and glycerol liquid is added to it. The white smoke-like vapor produced by the reaction is a mixture of carbon dioxide gas and water vapor.
A stirred BZ reaction mixture showing changes in color over time. The discovery of the phenomenon is credited to Boris Belousov.In 1951, while trying to find the non-organic analog to the Krebs cycle, he noted that in a mix of potassium bromate, cerium(IV) sulfate, malonic acid, and citric acid in dilute sulfuric acid, the ratio of concentration of the cerium(IV) and cerium(III) ions ...
The chemical chameleon reaction shows the process in reverse, by reducing violet potassium permanganate first to green potassium manganate and eventually to brown manganese dioxide: [1] [2] [5] KMnO 4 (violet) → K 2 MnO 4 (green) → MnO 2 (brown/yellow suspension) Blue potassium hypomanganate may also form as an intermediate. [6]
In chemistry, a reaction mechanism is the step by step sequence of elementary reactions by which overall chemical reaction occurs. [ 1 ] A chemical mechanism is a theoretical conjecture that tries to describe in detail what takes place at each stage of an overall chemical reaction.
These plots were first introduced in a 1970 paper by R. A. More O’Ferrall to discuss mechanisms of β-eliminations [2] and later adopted by W. P. Jencks in an attempt to clarify the finer details involved in the general acid-base catalysis of reversible addition reactions to carbon electrophiles such as the hydration of carbonyls.
Figure 6:Reaction Coordinate Diagrams showing reactions with 0, 1 and 2 intermediates: The double-headed arrow shows the first, second and third step in each reaction coordinate diagram. In all three of these reactions the first step is the slow step because the activation energy from the reactants to the transition state is the highest.
In solution, the intensity of charge-transfer bands in the UV-Vis absorbance spectrum is strongly dependent upon the degree (equilibrium constant) of this association reaction. Methods have been developed to determine the equilibrium constant for these complexes in solution by measuring the intensity of absorption bands as a function of the ...