Search results
Results from the WOW.Com Content Network
Detectors are designed to have one or two scintillation materials, depending on the application. "Single phosphor" detectors are used for either alpha or beta, and "Dual phosphor" detectors are used to detect both. [8] A scintillator such as zinc sulphide is used for alpha particle detection, whilst plastic scintillators are used for beta ...
A scintillation detector or scintillation counter is obtained when a scintillator is coupled to an electronic light sensor such as a photomultiplier tube (PMT), photodiode, or silicon photomultiplier. PMTs absorb the light emitted by the scintillator and re-emit it in the form of electrons via the photoelectric effect. The subsequent ...
Charge coupled device (CCD) cameras were first applied to transmission electron microscopy in the 1980s and later became widespread. [3] [4] For use in a TEM, CCDs are typically coupled with a scintillator such as single crystal Yttrium aluminium garnet (YAG) in which electrons from the electron beam are converted to photons, which are then transferred to the sensor of the CCD via a fiber ...
Liquid scintillation counter. Samples are dissolved or suspended in a "cocktail" containing a solvent (historically aromatic organics such as xylene or toluene, but more recently less hazardous solvents are used), typically some form of a surfactant, and "fluors" or scintillators which produce the light measured by the detector.
Disassembled Everhard-Thornley detector from (Philips XL30), showing (from left) the +300V grid and tube, transparent cylindrical light guide, golden clamping nut, and the internal assembly with scintillator disc (+10 kV) on the top. A common photomultiplier would be on the rear side of light guide and is not shown.
Diagram of neutrino detector in the MINERvA experiment. Left, front view of a single detector module. Right, elevation view of complete detector. The detector used for the MINERνA experiment is made of many layers of parallel scintillator strips. [9]
Poor counting efficiency can be caused by an extremely low energy to light conversion rate, (scintillation efficiency) which, even optimally, will be a small value. It has been calculated that only some 4% of the energy from a β emission event is converted to light by even the most efficient scintillation cocktails. [3]
In condensed matter physics, scintillation (/ ˈ s ɪ n t ɪ l eɪ ʃ ən / SIN-til-ay-shun) is the physical process where a material, called a scintillator, emits ultraviolet or visible light under excitation from high energy photons (X-rays or gamma rays) or energetic particles (such as electrons, alpha particles, neutrons, or ions).