Search results
Results from the WOW.Com Content Network
hash HAS-160: 160 bits hash HAVAL: 128 to 256 bits hash JH: 224 to 512 bits hash LSH [19] 256 to 512 bits wide-pipe Merkle–Damgård construction: MD2: 128 bits hash MD4: 128 bits hash MD5: 128 bits Merkle–Damgård construction: MD6: up to 512 bits Merkle tree NLFSR (it is also a keyed hash function) RadioGatún: arbitrary ideal mangling ...
The following tables compare general and technical information for a number of cryptographic hash functions. See the individual functions' articles for further information. This article is not all-inclusive or necessarily up-to-date. An overview of hash function security/cryptanalysis can be found at hash function security summary.
Most cryptographic hash functions are designed to take a string of any length as input and produce a fixed-length hash value. A cryptographic hash function must be able to withstand all known types of cryptanalytic attack. In theoretical cryptography, the security level of a cryptographic hash function has been defined using the following ...
A hash function that allows only certain table sizes or strings only up to a certain length, or cannot accept a seed (i.e. allow double hashing) is less useful than one that does. [citation needed] A hash function is applicable in a variety of situations. Particularly within cryptography, notable applications include: [8]
Knapsack-based hash functions—a family of hash functions based on the knapsack problem. The Zémor-Tillich hash function—a family of hash functions that relies on the arithmetic of the group of matrices SL 2. Finding collisions is at least as difficult as finding factorization of certain elements in this group.
The MD4 Message-Digest Algorithm is a cryptographic hash function developed by Ronald Rivest in 1990. [3] The digest length is 128 bits. The algorithm has influenced later designs, such as the MD5, SHA-1 and RIPEMD algorithms. The initialism "MD" stands for "Message Digest". One MD4 operation.
Hash-based signature schemes use one-time signature schemes as their building block. A given one-time signing key can only be used to sign a single message securely. Indeed, signatures reveal part of the signing key. The security of (hash-based) one-time signature schemes relies exclusively on the security of an underlying hash function.
The Secure Hash Algorithms are a family of cryptographic hash functions published by the National Institute of Standards and Technology (NIST) as a U.S. Federal Information Processing Standard (FIPS), including: SHA-0: A retronym applied to the original version of the 160-bit hash function published in 1993 under the name "SHA". It was ...