enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Zeros and poles - Wikipedia

    en.wikipedia.org/wiki/Zeros_and_poles

    Its zeros in the left halfplane are all the negative even integers, and the Riemann hypothesis is the conjecture that all other zeros are along Re(z) = 1/2. In a neighbourhood of a point z 0 , {\displaystyle z_{0},} a nonzero meromorphic function f is the sum of a Laurent series with at most finite principal part (the terms with negative index ...

  3. Riemann hypothesis - Wikipedia

    en.wikipedia.org/wiki/Riemann_hypothesis

    The other terms also correspond to zeros: the dominant term li(x) comes from the pole at s = 1, considered as a zero of multiplicity −1, and the remaining small terms come from the trivial zeros. For some graphs of the sums of the first few terms of this series see Riesel & Göhl (1970) or Zagier (1977) .

  4. Rouché's theorem - Wikipedia

    en.wikipedia.org/wiki/Rouché's_theorem

    Since has zeros inside the disk | | < (because >), it follows from Rouché's theorem that also has the same number of zeros inside the disk. One advantage of this proof over the others is that it shows not only that a polynomial must have a zero but the number of its zeros is equal to its degree (counting, as usual, multiplicity).

  5. Explicit formulae for L-functions - Wikipedia

    en.wikipedia.org/wiki/Explicit_formulae_for_L...

    The other terms also correspond to zeros: The dominant term li(x) comes from the pole at s = 1, considered as a zero of multiplicity −1, and the remaining small terms come from the trivial zeros. This formula says that the zeros of the Riemann zeta function control the oscillations of primes around their "expected" positions.

  6. Hardy–Littlewood zeta function conjectures - Wikipedia

    en.wikipedia.org/wiki/Hardy–Littlewood_zeta...

    In 1914, Godfrey Harold Hardy proved [1] that the Riemann zeta function (+) has infinitely many real zeros. Let () be the total number of real zeros, () be the total number of zeros of odd order of the function (+), lying on the interval (,].

  7. Length of a module - Wikipedia

    en.wikipedia.org/wiki/Length_of_a_module

    The order of vanishing is a generalization of the order of zeros and poles for meromorphic functions in complex analysis. For example, the function ( z − 1 ) 3 ( z − 2 ) ( z − 1 ) ( z − 4 i ) {\displaystyle {\frac {(z-1)^{3}(z-2)}{(z-1)(z-4i)}}} has zeros of order 2 and 1 at 1 , 2 ∈ C {\displaystyle 1,2\in \mathbb {C} } and a pole of ...

  8. Hilbert's Nullstellensatz - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_Nullstellensatz

    In mathematics, Hilbert's Nullstellensatz (German for "theorem of zeros", or more literally, "zero-locus-theorem") is a theorem that establishes a fundamental relationship between geometry and algebra. This relationship is the basis of algebraic geometry. It relates algebraic sets to ideals in polynomial rings over algebraically closed fields.

  9. Bézout's theorem - Wikipedia

    en.wikipedia.org/wiki/Bézout's_theorem

    The concept of multiplicity is fundamental for Bézout's theorem, as it allows having an equality instead of a much weaker inequality. Intuitively, the multiplicity of a common zero of several polynomials is the number of zeros into which the common zero can split when the coefficients are slightly changed.