Search results
Results from the WOW.Com Content Network
In nuclear astrophysics, the rapid neutron-capture process, also known as the r-process, is a set of nuclear reactions that is responsible for the creation of approximately half of the atomic nuclei heavier than iron, the "heavy elements", with the other half produced by the p-process and s-process.
Fusing with additional helium nuclei can create heavier elements in a chain of stellar nucleosynthesis known as the alpha process, but these reactions are only significant at higher temperatures and pressures than in cores undergoing the triple-alpha process.
The release of energy with the fusion of light elements is due to the interplay of two opposing forces: the nuclear force, a manifestation of the strong interaction, which holds protons and neutrons tightly together in the atomic nucleus; and the Coulomb force, which causes positively charged protons in the nucleus to repel each other. [24]
Supernova nucleosynthesis is the nucleosynthesis of chemical elements in supernova explosions.. In sufficiently massive stars, the nucleosynthesis by fusion of lighter elements into heavier ones occurs during sequential hydrostatic burning processes called helium burning, carbon burning, oxygen burning, and silicon burning, in which the byproducts of one nuclear fuel become, after ...
Even so, as physicists started to synthesize elements that are not found in nature, they found the stability decreased as the nuclei became heavier. [17] Thus, they speculated that the periodic table might come to an end. The discoverers of plutonium (element 94) considered naming it "ultimium", thinking it was the last. [18]
People living in urban areas can have a huge impact on nature. For Call to Earth Day 2023, CNN is focusing on the crucial connection between cities and wilderness. Why we should build cities that ...
The stable alpha elements are: C, O, Ne, Mg, Si, and S. The elements Ar and Ca are "observationally stable". They are synthesized by alpha capture prior to the silicon fusing stage, that leads to Type II supernovae. Si and Ca are purely alpha process elements. Mg can be separately consumed by proton capture reactions.
Stars fuse light elements to heavier ones in their cores, giving off energy in the process known as stellar nucleosynthesis. Nuclear fusion reactions create many of the lighter elements, up to and including iron and nickel in the most massive stars. Products of stellar nucleosynthesis remain trapped in stellar cores and remnants except if ...