enow.com Web Search

  1. Ad

    related to: 3d protein bonds include

Search results

  1. Results from the WOW.Com Content Network
  2. Protein tertiary structure - Wikipedia

    en.wikipedia.org/wiki/Protein_tertiary_structure

    (The tertiary structure of a protein consists of the way a polypeptide is formed of a complex molecular shape. This is caused by R-group interactions such as ionic and hydrogen bonds, disulphide bridges, and hydrophobic & hydrophilic interactions. Protein tertiary structure is the three-dimensional shape of a protein.

  3. Protein structure - Wikipedia

    en.wikipedia.org/wiki/Protein_structure

    The folding is driven by the non-specific hydrophobic interactions, the burial of hydrophobic residues from water, but the structure is stable only when the parts of a protein domain are locked into place by specific tertiary interactions, such as salt bridges, hydrogen bonds, and the tight packing of side chains and disulfide bonds.

  4. Ribbon diagram - Wikipedia

    en.wikipedia.org/wiki/Ribbon_diagram

    Ribbon diagrams, also known as Richardson diagrams, are 3D schematic representations of protein structure and are one of the most common methods of protein depiction used today. The ribbon depicts the general course and organisation of the protein backbone in 3D and serves as a visual framework for hanging details of the entire atomic structure ...

  5. Biomolecular structure - Wikipedia

    en.wikipedia.org/wiki/Biomolecular_structure

    The primary structure of a biopolymer is the exact specification of its atomic composition and the chemical bonds connecting those atoms (including stereochemistry).For a typical unbranched, un-crosslinked biopolymer (such as a molecule of a typical intracellular protein, or of DNA or RNA), the primary structure is equivalent to specifying the sequence of its monomeric subunits, such as amino ...

  6. Protein structure prediction - Wikipedia

    en.wikipedia.org/wiki/Protein_structure_prediction

    An alpha-helix with hydrogen bonds (yellow dots) The α-helix is the most abundant type of secondary structure in proteins. The α-helix has 3.6 amino acids per turn with an H-bond formed between every fourth residue; the average length is 10 amino acids (3 turns) or 10 Å but varies from 5 to 40 (1.5 to 11 turns).

  7. Protein domain - Wikipedia

    en.wikipedia.org/wiki/Protein_domain

    Pyruvate kinase, a protein with three domains (In molecular biology, a protein domain is a region of a protein's polypeptide chain that is self-stabilizing and that folds independently from the rest. Each domain forms a compact folded three-dimensional structure. Many proteins consist of several domains, and a domain may appear in a variety of ...

  8. Protein folding - Wikipedia

    en.wikipedia.org/wiki/Protein_folding

    Protein before and after folding Results of protein folding. Protein folding is the physical process by which a protein, after synthesis by a ribosome as a linear chain of amino acids, changes from an unstable random coil into a more ordered three-dimensional structure. This structure permits the protein to become biologically functional. [1]

  9. Protein contact map - Wikipedia

    en.wikipedia.org/wiki/Protein_contact_map

    Hydrogen bonds stabilizing secondary structural elements (secondary hydrogen bonds) and those formed between distant amino acid residues - defined as tertiary hydrogen bonds - can be easily distinguished in HB plot, thus, amino acid residues involved in stabilizing protein structure and function can be identified.

  1. Ad

    related to: 3d protein bonds include