Search results
Results from the WOW.Com Content Network
An octahedron can be any polyhedron with eight faces. In a previous example, the regular octahedron has 6 vertices and 12 edges, the minimum for an octahedron; irregular octahedra may have as many as 12 vertices and 18 edges. [24] There are 257 topologically distinct convex octahedra, excluding mirror images. More specifically there are 2, 11 ...
An example can be found in the model of a buckminsterfullerene, a truncated icosahedron-shaped geodesic dome allotrope of elemental carbon discovered in 1985. [17] In other engineering and science applications, its shape was also the configuration of the lenses used for focusing the explosive shock waves of the detonators in both the gadget and ...
It is an example of a Platonic solid and of a deltahedron. The icosahedral graph represents the skeleton of a regular icosahedron. Many polyhedra are constructed from the regular icosahedron. For example, most of the Kepler–Poinsot polyhedron is constructed by faceting. Some of the Johnson solids can be constructed by removing the pentagonal ...
In geometry, the truncated octahedron is the Archimedean solid that arises from a regular octahedron by removing six pyramids, one at each of the octahedron's vertices. The truncated octahedron has 14 faces (8 regular hexagons and 6 squares), 36 edges, and 24 vertices. Since each of its faces has point symmetry the truncated octahedron is a 6 ...
An object with this symmetry is characterized by the part of the object in the fundamental domain, for example the cube is given by z = 1, and the octahedron by x + y + z = 1 (or the corresponding inequalities, to get the solid instead of the surface). ax + by + cz = 1 gives a polyhedron with 48 faces, e.g. the disdyakis dodecahedron.
The rectification of any regular self-dual polyhedron or tiling will result in another regular polyhedron or tiling with a tiling order of 4, for example the tetrahedron {3,3} becoming an octahedron {3,4}. As a special case, a square tiling {4,4} will turn into another square tiling {4,4} under a rectification operation.
Examples: The regular octahedron , with Schläfli symbol {3,4} and 4 being even, can be considered quasiregular as a tetratetrahedron (2 sets of 4 triangles of the tetrahedron ), with vertex configuration (3.3) 4/2 = (3 a .3 b ) 2 , alternating two colors of triangular faces.
where r, s, and t are positive real numbers that determine the main features of the superquadric. Namely: less than 1: a pointy octahedron modified to have concave faces and sharp edges. exactly 1: a regular octahedron. between 1 and 2: an octahedron modified to have convex faces, blunt edges and blunt corners. exactly 2: a sphere