Search results
Results from the WOW.Com Content Network
For example, 2 + 3i is a complex number. [3] ... Because the real and imaginary part of 5 + 5i are equal, the argument of that number is 45 degrees, or ...
The integer n is called the index or degree, and the number x of which the root is taken is the radicand. A root of degree 2 is called a square root and a root of degree 3, a cube root. Roots of higher degree are referred by using ordinal numbers, as in fourth root, twentieth root, etc. The computation of an n th root is a root extraction.
Binary coding systems of complex numbers, i.e. systems with the digits = {,}, are of practical interest. [9] Listed below are some coding systems , (all are special cases of the systems above) and resp. codes for the (decimal) numbers −1, 2, −2, i. The standard binary (which requires a sign, first line) and the "negabinary" systems (second ...
As 100=10 2, these are two decimal digits. 121: Number expressible with two undecimal digits. 125: Number expressible with three quinary digits. 128: Using as 128=2 7. [clarification needed] 144: Number expressible with two duodecimal digits. 169: Number expressible with two tridecimal digits. 185
An imaginary number is the product of a real number and the imaginary unit i, [note 1] which is defined by its property i 2 = −1. [1] [2] The square of an imaginary number bi is −b 2. For example, 5i is an imaginary number, and its square is −25. The number zero is considered to be both real and imaginary. [3]
The argument is defined up to an integer multiple of 2 π; this means that, if is the argument of a complex number, then + is also an argument of the same complex number for every integer . The polar form of the product of two complex numbers is obtained by multiplying the absolute values and adding the arguments.
Most numbers have a unique quater-imaginary representation, but just as 1 has the two representations 1 = 0. 9 in decimal notation, so, because of 0. 0001 2i = 1 / 15 , the number 1 / 5 has the two quater-imaginary representations 0. 0003 2i = 3· 1 / 15 = 1 / 5 = 1 + 3· –4 / 15 = 1. 0300 2i. To convert ...
5 is a Fermat prime, a Mersenne prime exponent, as well as a Fibonacci number. 5 is the first congruent number, as well as the length of the hypotenuse of the smallest integer-sided right triangle, making part of the smallest Pythagorean triple (3, 4, 5). [1] 5 is the first safe prime [2] and the first good prime.