Search results
Results from the WOW.Com Content Network
Cellular respiration may be described as a set of metabolic reactions and processes that take place in the cells of organisms to convert chemical energy from nutrients into ATP, and then release waste products. [1] Cellular respiration is a vital process that occurs in the cells of all [[plants and some bacteria ]].
Metabolism (/ m ə ˈ t æ b ə l ɪ z ə m /, from Greek: μεταβολή metabolē, "change") is the set of life-sustaining chemical reactions in organisms.The three main functions of metabolism are: the conversion of the energy in food to energy available to run cellular processes; the conversion of food to building blocks of proteins, lipids, nucleic acids, and some carbohydrates; and the ...
A mitochondrion (pl. mitochondria) is an organelle found in the cells of most eukaryotes, such as animals, plants and fungi.Mitochondria have a double membrane structure and use aerobic respiration to generate adenosine triphosphate (ATP), which is used throughout the cell as a source of chemical energy. [2]
When animals and fungi consume plants, they use cellular respiration to break down these stored carbohydrates to make energy available to cells. [2] Both animals and plants temporarily store the released energy in the form of high-energy molecules, such as adenosine triphosphate (ATP), for use in various cellular processes.
This allows the cell to regulate the rate of production and prevent an infinite loop, also known as a futile cycle, from forming with catabolism. [10] The balance between anabolism and catabolism is sensitive to ADP and ATP, otherwise known as the energy charge of the cell.
Although physiologic respiration is necessary to sustain cellular respiration and thus life in animals, the processes are distinct: cellular respiration takes place in individual cells of the organism, while physiologic respiration concerns the diffusion and transport of metabolites between the organism and the external environment.
The process that converts the chemical energy of food into ATP (which can release energy) is not dependent on oxygen availability. During exercise , the supply and demand of oxygen available to muscle cells is affected by duration and intensity and by the individual's cardio respiratory fitness level. [ 1 ]
This, in turn, causes the liver to release glucose into the blood by breaking down stored glycogen, and by means of gluconeogenesis. If the fall in the blood glucose level is particularly rapid or severe, other glucose sensors cause the release of epinephrine from the adrenal glands into the blood.