enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Conversion (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Conversion_(chemistry)

    Comparison and relation between conversion (X), selectivity (S) and yield (Y) for a chemical reaction. A: reagent; B, C: products. For the following abstract example and the amounts depicted on the right, the following calculation can be performed with the above definitions, either in batch or a continuous reactor.

  3. Glass batch calculation - Wikipedia

    en.wikipedia.org/wiki/Glass_batch_calculation

    An example batch calculation may be demonstrated here. The desired glass composition in wt% is: 67 SiO 2, 12 Na 2 O, 10 CaO, 5 Al 2 O 3, 1 K 2 O, 2 MgO, 3 B 2 O 3, and as raw materials are used sand, trona, lime, albite, orthoclase, dolomite, and borax. The formulas and molar masses of the glass and batch components are listed in the following ...

  4. Yield (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Yield_(chemistry)

    In the section "Calculations of yields in the monitoring of reactions" in the 1996 4th edition of Vogel's Textbook of Practical Organic Chemistry (1978), the authors write that, "theoretical yield in an organic reaction is the weight of product which would be obtained if the reaction has proceeded to completion according to the chemical ...

  5. Chemical synthesis - Wikipedia

    en.wikipedia.org/wiki/Chemical_synthesis

    The amount produced by chemical synthesis is known as the reaction yield. Typically, yields are expressed as a mass in grams (in a laboratory setting) or as a percentage of the total theoretical quantity that could be produced based on the limiting reagent. [2] A side reaction is an

  6. Limiting reagent - Wikipedia

    en.wikipedia.org/wiki/Limiting_reagent

    In this method the chemical equation is used to calculate the amount of one product which can be formed from each reactant in the amount present. The limiting reactant is the one which can form the smallest amount of the product considered. This method can be extended to any number of reactants more easily than the first method.

  7. First-pass yield - Wikipedia

    en.wikipedia.org/wiki/First-pass_yield

    The total first time yield is equal to FTYofA * FTYofB * FTYofC * FTYofD or 0.9000 * 0.8889 * 0.9375 * 0.9333 = 0.7000. You can also get the total process yield for the entire process by simply dividing the number of good units produced by the number going into the start of the process. In this case, 70/100 = 0.70 or 70% yield.

  8. Process chemistry - Wikipedia

    en.wikipedia.org/wiki/Process_chemistry

    Yield is defined as the amount of product obtained in a chemical reaction. The yield of practical significance in process chemistry is the isolated yield—the yield of the isolated product after all purification steps. In a final API synthesis, isolated yields of 80 percent or above for each synthetic step are expected.

  9. Fenske equation - Wikipedia

    en.wikipedia.org/wiki/Fenske_equation

    Fractionation at total reflux. The Fenske equation in continuous fractional distillation is an equation used for calculating the minimum number of theoretical plates required for the separation of a binary feed stream by a fractionation column that is being operated at total reflux (i.e., which means that no overhead product distillate is being withdrawn from the column).