enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Decision tree learning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_learning

    Decision tree learning is a supervised learning approach used in statistics, data mining and machine learning.In this formalism, a classification or regression decision tree is used as a predictive model to draw conclusions about a set of observations.

  3. C4.5 algorithm - Wikipedia

    en.wikipedia.org/wiki/C4.5_algorithm

    C4.5 is an algorithm used to generate a decision tree developed by Ross Quinlan. [1] C4.5 is an extension of Quinlan's earlier ID3 algorithm.The decision trees generated by C4.5 can be used for classification, and for this reason, C4.5 is often referred to as a statistical classifier.

  4. Data mining - Wikipedia

    en.wikipedia.org/wiki/Data_mining

    The difference between data analysis and data mining is that data analysis is used to test models and hypotheses on the dataset, e.g., analyzing the effectiveness of a marketing campaign, regardless of the amount of data. In contrast, data mining uses machine learning and statistical models to uncover clandestine or hidden patterns in a large ...

  5. Statistical classification - Wikipedia

    en.wikipedia.org/wiki/Statistical_classification

    In some of these, it is employed as a data mining procedure, while in others more detailed statistical modeling is undertaken. Biological classification – The science of identifying, describing, defining and naming groups of biological organisms

  6. Category:Classification algorithms - Wikipedia

    en.wikipedia.org/wiki/Category:Classification...

    This page was last edited on 6 December 2016, at 18:28 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.

  7. k-nearest neighbors algorithm - Wikipedia

    en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

    Condensed nearest neighbor (CNN, the Hart algorithm) is an algorithm designed to reduce the data set for k-NN classification. [22] It selects the set of prototypes U from the training data, such that 1NN with U can classify the examples almost as accurately as 1NN does with the whole data set.

  8. ID3 algorithm - Wikipedia

    en.wikipedia.org/wiki/ID3_algorithm

    Therefore, the greater the entropy at a node, the less information is known about the classification of data at this stage of the tree; and therefore, the greater the potential to improve the classification here. As such, ID3 is a greedy heuristic performing a best-first search for locally optimal entropy values. Its accuracy can be improved by ...

  9. Associative classifier - Wikipedia

    en.wikipedia.org/wiki/Associative_classifier

    An associative classifier (AC) is a kind of supervised learning model that uses association rules to assign a target value. The term associative classification was coined by Bing Liu et al., [1] in which the authors defined a model made of rules "whose right-hand side are restricted to the classification class attribute".