enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Binomial theorem - Wikipedia

    en.wikipedia.org/wiki/Binomial_theorem

    In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, the power ⁠ (+) ⁠ expands into a polynomial with terms of the form ⁠ ⁠, where the exponents ⁠ ⁠ and ⁠ ⁠ are nonnegative integers satisfying ⁠ + = ⁠ and the coefficient ⁠ ⁠ of each term is a specific positive integer ...

  3. Vandermonde's identity - Wikipedia

    en.wikipedia.org/wiki/Vandermonde's_identity

    where the above convention for the coefficients of the polynomials agrees with the definition of the binomial coefficients, because both give zero for all i > m and j > n, respectively. By comparing coefficients of x r , Vandermonde's identity follows for all integers r with 0 ≤ r ≤ m + n .

  4. Pascal's rule - Wikipedia

    en.wikipedia.org/wiki/Pascal's_rule

    In mathematics, Pascal's rule (or Pascal's formula) is a combinatorial identity about binomial coefficients.It states that for positive natural numbers n and k, + = (), where () is a binomial coefficient; one interpretation of the coefficient of the x k term in the expansion of (1 + x) n.

  5. Bernoulli's inequality - Wikipedia

    en.wikipedia.org/wiki/Bernoulli's_inequality

    Download as PDF; Printable version; ... by using the formula for geometric series: ... One can prove Bernoulli's inequality for x ≥ 0 using the binomial theorem.

  6. Hockey-stick identity - Wikipedia

    en.wikipedia.org/wiki/Hockey-stick_identity

    Pascal's triangle, rows 0 through 7. The hockey stick identity confirms, for example: for n=6, r=2: 1+3+6+10+15=35.. In combinatorics, the hockey-stick identity, [1] Christmas stocking identity, [2] boomerang identity, Fermat's identity or Chu's Theorem, [3] states that if are integers, then

  7. Binomial (polynomial) - Wikipedia

    en.wikipedia.org/wiki/Binomial_(polynomial)

    A binomial raised to the n th power, represented as (x + y) n can be expanded by means of the binomial theorem or, equivalently, using Pascal's triangle. For example, the square (x + y) 2 of the binomial (x + y) is equal to the sum of the squares of the two terms and twice the product of the terms, that is:

  8. Multinomial theorem - Wikipedia

    en.wikipedia.org/wiki/Multinomial_theorem

    In mathematics, the multinomial theorem describes how to expand a power of a sum in terms of powers of the terms in that sum. It is the generalization of the binomial theorem from binomials to multinomials .

  9. Kummer's theorem - Wikipedia

    en.wikipedia.org/wiki/Kummer's_theorem

    In mathematics, Kummer's theorem is a formula for the exponent of the highest power of a prime number p that divides a given binomial coefficient. In other words, it gives the p-adic valuation of a binomial coefficient. The theorem is named after Ernst Kummer, who proved it in a paper, (Kummer 1852).