Search results
Results from the WOW.Com Content Network
There is considerable overlap with the fields of ecology, evolutionary biology, microbiology, paleontology, and particularly soil science and biogeochemistry. Geobiology applies the principles and methods of biology, geology, and soil science to the study of the ancient history of the co-evolution of life and Earth as well as the role of life ...
Geochemists define the biosphere as being the total sum of living organisms (the "biomass" or "biota" as referred to by biologists and ecologists). In this sense, the biosphere is but one of four separate components of the geochemical model, the other three being geosphere, hydrosphere, and atmosphere
Open systems have input and output flows, representing exchanges of matter, energy or information with its surroundings. An open system is a system that has external interactions. Such interactions can take the form of information, energy, or material transfers into or out of the system boundary, depending on the discipline which defines the ...
In the 20th century, geophysical methods were developed for remote exploration of the solid Earth and the ocean, and geophysics played an essential role in the development of the theory of plate tectonics. Geophysics is applied to societal needs, such as mineral resources, mitigation of natural hazards and environmental protection. [4]
Simultaneous Inversion (SI) is a pre-stack method that uses multiple offset or angle seismic sub-stacks and their associated wavelets as input; it generates P-impedance, S-impedance and density as outputs (although the density output resolution is rarely as high as the impedances). This helps improve discrimination between lithology, porosity ...
Geophysical survey is the systematic collection of geophysical data for spatial studies. Detection and analysis of the geophysical signals forms the core of Geophysical signal processing. The magnetic and gravitational fields emanating from the Earth's interior hold essential information concerning seismic activities and the internal structure.
where I and O are the input and output rates. In the above example, the steady-state input and output rates are both equal to a, so τ res = 1/k. [20] If the input and output rates are nonlinear functions of C, they may still be closely balanced over time scales much greater than the residence time; otherwise, there will be large fluctuations in C.
Despite the great potential complexity and diversity of biological networks, all first-order network behavior generalizes to one of four possible input-output motifs: hyperbolic or Michaelis–Menten, ultra-sensitive, bistable, and bistable irreversible (a bistability where negative and therefore biologically impossible input is needed to return from a state of high output).