Search results
Results from the WOW.Com Content Network
Mass attenuation coefficients of selected elements for X-ray photons with energies up to 250 keV. The mass attenuation coefficient, or mass narrow beam attenuation coefficient of a material is the attenuation coefficient normalized by the density of the material; that is, the attenuation per unit mass (rather than per unit of distance).
In the scientific community, Mr. Hubbell is known for his evaluations, computations and compilations of photon cross sections and attenuation (and energy-absorption) coefficients used in medicine, engineering and other disciplines. He is also known for his computationally tractable solutions of problems associated with the predictions of ...
In engineering, attenuation is usually measured in units of decibels per unit length of medium (dB/cm, dB/km, etc.) and is represented by the attenuation coefficient of the medium in question. [1] Attenuation also occurs in earthquakes ; when the seismic waves move farther away from the hypocenter , they grow smaller as they are attenuated by ...
The attenuation coefficient of a volume, denoted μ, is defined as [6] =, where Φ e is the radiant flux;; z is the path length of the beam.; Note that for an attenuation coefficient which does not vary with z, this equation is solved along a line from =0 to as:
where μ is the linear attenuation coefficient, μ/ρ is the mass attenuation coefficient and ρ is the density of the material. The mass attenuation coefficient can be looked up or calculated for any material and energy combination using the National Institute of Standards and Technology (NIST) databases. [7] [8]
absorption coefficient is essentially (but not quite always) synonymous with attenuation coefficient; see attenuation coefficient for details; molar absorption coefficient or molar extinction coefficient , also called molar absorptivity , is the attenuation coefficient divided by molarity (and usually multiplied by ln(10), i.e., decadic); see ...
An overview of absorption of electromagnetic radiation.This example shows the general principle using visible light as a specific example. A white light source—emitting light of multiple wavelengths—is focused on a sample (the pairs of complementary colors are indicated by the yellow dotted lines).
A material's half-value layer (HVL), or half-value thickness, is the thickness of the material at which the intensity of radiation entering it is reduced by one half. [1] HVL can also be expressed in terms of air kerma rate (AKR), rather than intensity: the half-value layer is the thickness of specified material that, "attenuates the beam of radiation to an extent such that the AKR is reduced ...