Search results
Results from the WOW.Com Content Network
Penicillin molecules are small enough to pass through the spaces of glycoproteins in the cell wall. For this reason Gram-positive bacteria are very susceptible to penicillin (as first evidenced by the discovery of penicillin in 1928 [46]). [47] Penicillin, or any other molecule, enters Gram-negative bacteria in a different manner. The bacteria ...
The side effects of penicillin are bodily responses to penicillin and closely related antibiotics that do not relate directly to its effect on bacteria. A side effect is an effect that is not intended with normal dosing. [1] Some of these reactions are visible and some occur in the body's organs or blood.
The body is continually exposed to many species of bacteria, including beneficial commensals, which grow on the skin and mucous membranes, and saprophytes, which grow mainly in the soil and in decaying matter. The blood and tissue fluids contain nutrients sufficient to sustain the growth of many bacteria.
Escherichia coli bacteria on the right are sensitive to two beta-lactam antibiotics, and do not grow in the semi-circular regions surrounding antibiotics. E. coli bacteria on the left are resistant to beta-lactam antibiotics, and grow next to one antibiotic (bottom) and are less inhibited by another antibiotic (top).
β-Lactam antibiotics are indicated for the prevention and treatment of bacterial infections caused by susceptible organisms. At first, β-lactam antibiotics were mainly active only against gram-positive bacteria, yet the recent development of broad-spectrum β-lactam antibiotics active against various gram-negative organisms has increased their usefulness.
A colored electron microscopy image of methicillin-resistant staphylococcus aureus (), a bacterium commonly targeted by broad-spectrum antibioticsA broad-spectrum antibiotic is an antibiotic that acts on the two major bacterial groups, Gram-positive and Gram-negative, [1] or any antibiotic that acts against a wide range of disease-causing bacteria. [2]
Antibiotics only work for bacteria and do not affect viruses. Antibiotics work by slowing down the multiplication of bacteria or killing the bacteria. The most common classes of antibiotics used in medicine include penicillin , cephalosporins , aminoglycosides , macrolides , quinolones and tetracyclines .
Bactericidal antibiotics kill bacteria; bacteriostatic antibiotics slow their growth or reproduction. Bactericidal antibiotics that inhibit cell wall synthesis: the beta-lactam antibiotics ( penicillin derivatives ( penams ), cephalosporins ( cephems ), monobactams , and carbapenems ) and vancomycin .